Apparatus and method for wet cleaning or etching a flat...

Cleaning and liquid contact with solids – Processes – Work handled in bulk or groups

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C134S032000, C134S12200P, C134S902000

Reexamination Certificate

active

06530385

ABSTRACT:

FIELD OF THE INVENTION
The present invention is related to the fabrication of flat substrates such as semiconductor wafers, flat panel displays, solar cells for microelectronics applications or of flat substrates for other applications which require a cleaning or etching step of said substrates during manufacturing.
The present invention relates more particularly to an apparatus and a method for wet cleaning or etching of said flat substrate.
BACKGROUND OF THE INVENTION
In the processing of semiconductor wafers, the semiconductor surface preparation prior to various processing steps such as oxidation, deposition or growth processes, has become one of the most critical issues. With the rapid approach of subhalf micron design rules, very small particles with submicron dimensions and low levels of metal impurities (−10
10
atoms/cm
2
) can have a detrimental effect on process yields. A commonly used technique to reduce foreign particulate matter contamination level on semiconductor surfaces, is the immersion of wafers in liquids such as chemical solutions. The semiconductor wafers are usually placed into a tank or vessel or wet bench, which holds a liquid for cleaning or etching. Such tank or vessel or wet bench is installed in a clean room environment. Often a wet bench contains several vessels or tanks.
Semiconductor wafers or substrates can be immersed into the liquid from the upper part of the tank. Another way to put the substrates in contact with the liquid is to use a door or an entrance at the side wall of the tank and to place a batch of wafers into the tank. After the door is closed and sealed, liquid is flowing into the tank, again to make contact between the cleaning or etching liquid and the substrates. In both approaches, one can switch from one liquid to the other liquid in the same tank. This method is commonly denominated as a single tank processor. Variations of these two techniques are also used for single wafer cleaning or etching purposes. In such a case, the wafer can be placed into a small vessel, which can be larger than the wafer. In some cases, the wafers are immersed into the liquid; in other cases, the wafers are loaded into an empty vessel and the liquid is flowing into the vessel.
A particular apparatus used after cleaning or etching of semiconductor wafers is disclosed in EP 0 385 536, the teaching of which is incorporated herein by reference.
EP-A-407-044 discloses a system having two rooms, each containing a liquid. The system can be used in a semiconductor wafer manufacturing line and allows a wafer to be transported from one room of the system to another room of the system without an intermixing of the liquids occurring. The level of the liquids in the two rooms is adapted as to adjust the respective pressures of the liquids and an elaborate shutter device is provided in the system for opening and closing an opening between the two rooms without causing intermixing through flow and turbulence of the liquids.
A first drawback of the above-mentioned tools and methods is the footprint necessary, i.e., the surface area within a clean room occupied by the tank or vessel. Above-mentioned tools making use of a tank or vessel are big and occupy a large area within a clean room. It is to be understood that clean room area is very expensive due to the costs of maintaining an ultra-clean atmosphere.
Another drawback is the throughput of wafers. When, for example, a single tank processor is used, switching from one liquid to another liquid takes time and the system can have a lower throughput compared to a classical wet bench approach.
Another drawback of the prior art cleaning or etching tools and methods is that a non-uniformity in the cleaning or etching process occurs remains. This is to be understood as follows: when a wafer is dipped in a tank, the bottom part of the wafer is always remaining some longer in the cleaning or etching liquid than the upper part of the wafer. Therefore, the contact-time of several parts of the wafer is not identical.
A further drawback of the prior art cleaning or etching tools and methods is that a drying and/or rinsing step is required after a cleaning or etching step. This drying and/or rinsing step takes extra time and therefore increases the processing time of wafers.
AIM OF THE INVENTION
It is an aim of the present invention to provide an apparatus and a method for wet cleaning or etching a flat substrate wherein the above-mentioned drawbacks of the prior art tools and methods have less impact. The apparatus and the method of the present invention allow a high throughput of flat substrates and a high cycle time, allow a more uniform contact time for several parts of one wafer, allow the development of manufacturing systems with a small footprint and allow flat substrate manufacturing with the wet cleaning or etching step and the required drying procedure being executed in one processing step.
SUMMARY OF THE INVENTION
The first object of the present invention is to provide an apparatus for wet cleaning or etching a flat substrate which comprises a tank with an opening for said substrate, said tank containing a cleaning or etching liquid and being installed in an environment consisting essentially of a gas or of a mixture of gases, such as a clean-room.
The said opening is present below the liquid-surface. The apparatus further comprises means to prevent the liquid from flowing through the opening out of the tank into the environment.
Advantageously, the substrate is transferred from within said environment into said apparatus through said opening. Said apparatus can be for instance used as part of a manufacturing line for the production of said flat substrate or as part of a manufacturing line for developing features in said substrate, such as integrated circuits in a silicon wafer.
In a first aspect of the apparatus according to the invention, said means are realized by the dimensions of the opening, said opening being such narrow that the liquid is prevented from flowing through it due to the surface tension and/or the capillary effect of said liquid.
A first embodiment of the apparatus to achieve this is characterized in that the opening is marginally larger than the thickness of said substrate and is, with respect to the thickness of the wall of the tanks, a lengthened passage.
A second embodiment of the apparatus to achieve this is characterized in that the opening is marginally larger than the thickness of said substrate and is towards the environment a converging passage.
In a second aspect of the present invention, said means comprise a portion in the tank, which portion is above the liquid and is filled with a gas or a gas mixture with a pressure being lower than the gas pressure within said environment. An advantageous embodiment of the apparatus to achieve this, is characterized in that said means comprise a pump connected with the room in the tank for sucking the gas and thereby reducing the gas-pressure in the tank and subsequently reducing the liquid-pressure near the opening.
In a third aspect of the apparatus of the invention, said means comprise a room adjacent to said tank, said room having an opening for said substrate and said room being filled with a gas or a gas mixture with a pressure being higher than the pressure within said environment. The wafer is transferred from said environment through said room into said tank.
In a fourth aspect of the apparatus according to the invention, said tank can be adjacent to a process chamber wherein, for instance, a gas phase etching process of semiconductor wafers can occur. In this embodiment, wafers are transferred from within said environment through said tank into said process chamber. In this way, the process chamber can be isolated from the environment thereby avoiding the introduction of moisture, oxygen or other rest gases in the chamber. Also, the introduction of a wafer into the process chamber through said tank can occur with a relatively simple automation setup. By preference, one tank is located adjacent to the process chamber at the inle

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus and method for wet cleaning or etching a flat... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus and method for wet cleaning or etching a flat..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus and method for wet cleaning or etching a flat... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3043423

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.