Surgery – Diagnostic testing – Detecting nuclear – electromagnetic – or ultrasonic radiation
Reexamination Certificate
1999-04-21
2001-03-20
Jaworski, Francis J. (Department: 3737)
Surgery
Diagnostic testing
Detecting nuclear, electromagnetic, or ultrasonic radiation
C128S916000, C600S443000
Reexamination Certificate
active
06203497
ABSTRACT:
FIELD OF THE INVENTION
The invention relates generally to the field of ultrasound imaging. In particular, the present invention relates to processing ultrasound images from an ultrasound transducer. More specifically, the invention relates to a method and system for determining the spatial position of a medical instrument and of the images being acquired by the ultrasound imaging transducer and using this information to generate processed images of the body from the view or perspective of the instrument.
BACKGROUND OF THE INVENTION
It is known in the art to use ultrasound imaging systems to acquire internal images of a body, such as an anatomical body, in order to plan or perform a medical procedure, be it diagnostic therapeutic or surgical. There are several advantages to using ultrasound imaging systems over other imaging systems. For example, ultrasound imaging systems tend to be less intrusive on the body and do not expose the patient to large amounts of radiation or dyes. In addition, ultrasound imaging systems tend to be less expensive to purchase. Ultrasound imaging systems also tend to be less expensive to operate because there are fewer personal involved, it is not necessary to keep the patient stable, and the ultrasound images need not be “pre-acquired”, but can be acquired during the medical procedure.
The principal advantage of imaging systems in general is the ability to visualize internal regions of a patient and to guide medical instruments or probes within the body of a patient without making large incisions into the body of the patient. Making smaller incisions into the body of the patient decreases the risk for the patient and also the duration of the patient's hospital stay.
However, to effectively use images as a navigational aid during a procedure on the patient, the images being acquired by the ultrasound imaging transducer must be displayed in a clear, accurate and user-friendly manner. Only then can the medical practitioner easily visualize the internal region of the body.
In the past, the images acquired by an ultrasound imaging transducer could only be viewed from one perspective or view, namely from the perspective of the ultrasound imaging transducer which was acquiring the images. While the imaging transducer could be moved around the body to acquire images from different perspectives or views, it was not possible to acquire images from the perspective or view of the instrument. The medical practitioner would be left with the task of extrapolating the position, orientation and course of the instrument in the body from the images on the display.
In addition, the position of the instrument in prior art systems is generally not easily seen on the acquired images. To improve visibility of the instrument, it was often necessary to place an ultrasound tracking transducer on the instrument. The ultrasound tracking transducer would receive the ultrasound signals emitted by the ultrasound imaging transducer and provide a “blip” to represent the instrument on the images. But this would require modified instruments and additional cost.
Therefore, the prior art has suffered from several disadvantages. In particular, the prior art systems could only generate and display clear ultrasound images from one perspective or view, namely from the perspective or view of the ultrasound imaging transducer. However, this view provides a poor navigational tool for a medical practitioner at least because the medical practitioner cannot easily visualize the course of the instrument in the body.
In addition, most of the prior art systems require that a tracking transducer of some type be located on the probe or medical instrument which was inserted into the body of the patient. Modified instruments incorporating tracking transducers must be used.
Accordingly, there has been a need in the art for an alternative method and system for accurately, efficiently and robustly presenting the images acquired from an ultrasound imaging transducer. In addition, there is a need for a system which does not require the medical instruments to have ultrasound tracking transducers which enter the body.
SUMMARY OF THE INVENTION
Accordingly, it is an object of this invention to at least partially overcome the disadvantages of the prior art. Also, it is an object of this invention to provide an improved method and system for easily presenting enhanced images from the ultrasound imaging transducers, including three dimensional images of the internal regions of the patient, from the perspective or view of the instrument in the body, such that the view is related to the position and orientation of the instrument with respect to the patient. It is also an object of the present invention to provide a method and apparatus for tracking the spatial position of the medical instrument and the ultrasound imaging transducer and using this information to automatically generate images from the perspective or view of the instrument, with or without a representation of the instrument on the images.
Accordingly, in one of its aspects, this invention relates to a method for visualizing internal images of a body in relation to an instrument within the body, said images having been acquired by an ultrasound imaging transducer, said method comprising the steps of: (a) obtaining spatial positional information of the instrument comprising a position and an orientation of the instrument in a frame of reference; (b) obtaining spatial positional information of each of the images of the body acquired by the ultrasound imaging transducer comprising a position and an orientation of the images in the frame of reference; (c) determining the position and orientation of the instrument relative to the position and orientation of the images; (d) processing the images to generate processed images from a view which is spatially related to the position of the instrument; and (e) displaying the processed images of the body on a display.
In a further aspect, the present invention provides a method for obtaining the spatial positional information of the images in the frame of reference comprises the steps of: (a) determining spatial positional information of the images with respect to the transducer; (b) obtaining spatial positional information of the transducer comprising a position and an orientation of the transducer in the frame of reference; and (c) determining the position of the acquired images in the frame of reference from the spatial positional information of the transducer in the frame of reference and the spatial positional information of the images with respect to the transducer.
In a still further aspect, this invention relates to a system for visualizing internal images of a body in relation to an instrument within the body, said images having been acquired by an ultrasound imaging transducer, the system comprising: first spatial determinator means for determining spatial positional information of the instrument comprising a position and an orientation of the instrument in a frame of reference and for sending a first spatial signal representing the spatial positional information of the instrument; second spatial determinator means for determining spatial positional information of the ultrasound imaging transducer comprising a position and an orientation of the ultrasound imaging transducer in the frame of reference and for sending second spatial signal representing the spatial positional information of the transducer; mapping means for receiving the first spatial signal and the second spatial signal and generating a first mapping signal indicative of the position and orientation of the instrument relative to the position and orientation of the images; image processing means for receiving the first mapping signal and signals representing the images acquired by the transducer and generating processed images from a view which is spatially related to the position of the instrument; and display means for displaying the processed images.
Further aspects of the invention will become apparent upon reading the following detai
Dekel Doron
Hall Charles Ryan
Jaworski Francis J.
Orange & Chari
Surgical Navigation Specialist
LandOfFree
Apparatus and method for visualizing ultrasonic images does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Apparatus and method for visualizing ultrasonic images, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus and method for visualizing ultrasonic images will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2490471