Surgery – Diagnostic testing – Detecting nuclear – electromagnetic – or ultrasonic radiation
Reexamination Certificate
2002-10-01
2009-06-02
Smith, Ruth S (Department: 3737)
Surgery
Diagnostic testing
Detecting nuclear, electromagnetic, or ultrasonic radiation
C600S437000, C600S443000
Reexamination Certificate
active
07542790
ABSTRACT:
The invention relates to an apparatus for flow estimation using synthetic aperture imaging. The method uses a Synthetic Transmit Aperture, but unlike previous approaches a new frame is created after every pulse emission. In receive mode parallel beam forming is implemented. The beam formed RF data is added to the previously created RF lines obtained by the same transmit sequence. The apparatus comprises a pulser (1) to generate a pulsed voltage signal, that is fed to the emit beam former (2). The emit beam former (2) is connected to the emitting transducer array (3). The ultrasound is reflected by the object (4) and received by the elements of the transducer array (5). All of these signals are then combined in the beam processor (6) to focus all of the beams in the image in both transmit and receive mode and the simultaneously focused signals are used for updating the image in the processor (7). The estimation processor (8) to correlate the individual measurements to obtain the displacement between high-resolution images and thereby determine the velocity.
REFERENCES:
patent: 5465722 (1995-11-01), Fort et al.
patent: 5531117 (1996-07-01), Fortes
patent: 5769079 (1998-06-01), Hossack
patent: 6689063 (2004-02-01), Jensen et al.
patent: WO 00/68931 (2000-11-01), None
J. T. Ylitalo, “In-vitro study of computed ultrasound imaging method.” In Proc. IEEE Ultrason. Symp., pp. 1577-1580, 1994.
J. T. Ylitalo and H. Ermert, “Ultrasound synthetic aperture imaging: monostatic approach.” IEEE Trans. Ultrason., Ferroelec., Freq. Contr., 41:333-339, 1994.
J. T. Ylitalo, “Synthetic aperture ultrasound imaging using a convex array.” In. Proc. IEEE Ultrason. Symp., pp. 1337-1340, 1995.
J. T. Ylitalo, “A fast ultrasonic synthetic aperture imaging method: application to NDT.” Ultrasonics, pp. 331-333, 1996.
J. T. Ylitalo, “On the signal-to-noise ratio of a synthetic aperture ultrasound imaging method.” Eur. J. Ultrasound, pp. 227-281, 1996.
M. Karaman, P. C. Li, and M. O'Donnell, “Synthetic aperture imaging for a small scale systems.” IEEE Trans. Ultrason., Ferroelec., Freq. Contr., 42:429-442, 1995.
R. Y. Chiao and L. J. Thomas, “Analytic evaluation of sampled aperture ultrasonic imaging techniques for NDE.” IEEE Trans. Ultrason., Ferroelec., Freq. Contr., 41:484-493, 1994.
S. Holm and H. Yao, “Improved framerate with synthetic transmit aperture imaging using prefocused subapertures.” Proc. IEEE Ultrason. Symp., pp. 1535-1538, 1997.
G. R. Lockwood, J. R. Talman, and S. S. Brunke, “Real-time 3-D ultrasound imaging using sparse synthetic aperture beamforming.” IEEE Trans. Ultrason., Ferroelec., Freq. Contr., 45:980-988, 1998.
C. R. Hazard and G. R. Lockwood, “Theoretical assessment of a synthetic aperture beamformer for real-time 3-D imaging.” IEEE Trans. Ultrason., Ferroelec., Freq. Contr., 46:972-980, 1999.
S. I. Nikolov., K. Gammelmark, and J. A. Jensen, “Recursive ultrasound imaging. ” Proc. IEEE Ultrason. Symp., vol. 2, pp. 1621-1625, 1999.
L. F. Nock and G. E. Trahey, “Synthetic receive aperture imaging with phase correction for motion and for tissue inhomogenities—part II: effects of and correction for motion.” IEEE Trans. Ultrason., Ferroelec., Freq., Contr., 39:496-501, 1992.
H. S. Bilge, M. Karaman, and M. O'Donnell, “Motion estimation using common spatial frequencies in synthetic aperture imaging.” In Proc. IEEE Ultrason. Symp., pp. 1551-1554, 1996.
S. G. Foster, P. M. Embree, and W. D. O'Brien, “Flow velocity profile via time-domain correlation: Error analysis and computer simulation.” IEEE Trans. Ultrason., Ferroelec., Freq. Contr, 37:164-175, 1990.
S. I. Nikolov, K. Gammelmark, and J. A. Jensen, “Velocity estimation using recursive ultrasound imaging and spatially encoded signals.” In Proc. IEEE Ultrason. Symp., vol. 2, pp. 1473-1477, 2000.
J. A. Jensen, “Estimation of Blood Velocities Using Ultrasound: A Signal Processing Approach.” Cambridge University Press, New York, 1996.
J. A. Jensen, “Stationary echo canceling in velocity estimation by time-domain cross-correlation,” IEEE Trans. Med. Imag., 12:471-477, 1993b.
C. Kasai, K. Namekawa, A. Koyano, and R. Omoto, “Real-time two-dimensional blood flow imaging using an autocorrelation technique.” IEEE Trans. Son. Ultrason., 32:458-463, 1985.
K. W. Ferrara and V. R. Algazi, “Estimation of blood velocity using the wideband maximum likelihood estimator.” Proc. IEEE Ultrason. Symp., pp. 897-901, 1989.
O.Bonnefous, “Measurement of the complete 3D velocity vector of blood flows.” Proc. IEEE Ultrason. Symp., pp. 795-799, 1988.
J. A. Jensen and I. R. Lacasa, “Estimation of blood velocity vectors using transverse ultrasound beam focusing and cross-correlation.” Proc. IEEE Ultrason. Symp., pp. 1493-1497, 1999.
I. R. Lacasa, “Estimation of blood velocities with ultrasound.” Master's thesis, Department of Information Technology, Technical University of Denmark, 1999.
J. A. Jensen and P. Gori, “Improved accuracy in the estimation of blood velocity vectors using matched filtering.” Proc. IEEE Ultrason. Symp., vol. 2, pp. 1525-1530, 2000.
P. Munk, “Estimation of blood velocity vectors using ultrasound.” PhD thesis, Department of Information Technology, Technical University of Demark, Lyngby, Demark, 2000.
J. A. Jensen and P. Munk, “A new method for estimation of velocity vectors.” IEEE Trans. Ultrason., Ferroelec., Freq. Contr., 45:837-851, 1998.
J. A. Jensen, “A new estimator for vector velocity estimation.” IEEE Trans. Ultrason., Ferroelec., Freq. Contr., 48(4): 886-894, 2001.
G. E. Trahey, J. W. Allison, and O. T. Von Ramm, “Angle independent ultrasonic detection of blood flow.” IEEE Trans. Biomed. Eng., BME-34:965-967, 1987.
G. E. Trahey, S. M. Hubbard, and O. T. Von Ramm, “Angle independent ultrasonic blood flow detection by frame-to-frame correlation of B-mode images.” Ultrasonics, 26:271-276, 1988.
L. N. Bohs and G. E. Trahey, “A novel method for angle independent ultrasonic imaging of blood flow and tissue motion.” IEEE Trans. Biomed. Eng., 38:280-286, 1991.
L. N. Bohs, B. J. Geiman, K. R. Nightingale, C. D. Choi, B. H. Friemel, and G. E. Trahey, “Ensemble tracking: a new method for 2D vector velocity measurement.” Proc. IEEE Ultrason. Symp., pp. 1485-1488, 1995.
B. Geiman, L. Bohs, M. Anderson, and G. E. Trahey, “Initial experimental results using ensemble tracking for 2D vector velocity measurement.” Proc. IEEE Ultrason. Symp., pp. 1241-1244, 1996.
L. N. Bohs, B. J. Geiman, S. M. Breit, and G. E. Trahey, “Ensemble tracking for 2D vector velocity measurement: experimental and initial clinical results,” IEEE Trans. Ultrason., Ferroelec., Freq. Contr., 45:912-924, 1998.
Jensen Jorgen Arendt
Nikolov Svetoslav
B-K Medical A/S
Finnegan Henderson Farabow Garrett & Dunner L.L.P.
Kish James
Smith Ruth S
LandOfFree
Apparatus and method for velocity estimation in synthetic... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Apparatus and method for velocity estimation in synthetic..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus and method for velocity estimation in synthetic... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-4055051