Surgery – Instruments – Blunt dissectors
Reexamination Certificate
2000-01-14
2002-10-22
Jackson, Gary (Department: 3731)
Surgery
Instruments
Blunt dissectors
C606S080000
Reexamination Certificate
active
06468289
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Technical Field
The present invention relates to the field of tissue removal and tissue grafting. More particularly, the present invention relates to an apparatus and method for the percutaneous cutting and removal of selected portions of tissue from a patient and the possible harvesting and implantation of the tissue portion in the donor.
2. Description of the Prior Art
There are various known methods and apparatus for the cutting and removal of tissue fragments from a human. Each of these, however, suffers from one or more deficiencies.
U.S. Pat. No. 4,832,683 shows an instrument for ultrasonic cutting of bones, with irrigation or suction. However, there is no suction while cutting, no removal of the cut bone or tissue, and no flexibility in the instrument.
U.S. Pat. No. 4,265,231 shows apparatus for drilling a curved hole having a flexible shaft confined in a rigid tubular sheath, but which shows no removal of cut bone or tissue.
U.S. Pat. No. 4,541,423 shows apparatus for drilling a curved hole having a flexible shaft confined in a semi-rigid tubular sheath, but which shows no removal of cut bone or tissue.
U.S. Pat. No. 4,589,414 shows a surgical cutting instrument with a reciprocatory cutting motion, but which has no removal of cut bone or tissue, and no flexibility in the instrument.
U.S. Pat. No. 4,603,694 shows a rotating arthroscopic shaver with suction, but which is not flexible and which has no removal of cut bone or tissue.
U.S. Pat. No. 4,751,922 shows a flexible medullary reamer with a plastic shaft and a guide rod, but which has no suction and no removal of the cut bone or tissue.
U.S. Pat. Nos. 4,798,213, 4,649,918, and 4,142,517 show various apparatus for bone coring.
SUMMARY OF THE INVENTION
The present invention is a percutaneous tissue removal apparatus including a flexible drill shaft and means for transmitting motion to the shaft. A cutting tip is mounted on the shaft to cut tissue fragments from the tissue. The tissue fragments are removed by suction along the flexible drill shaft to a location outside the body while cutting. One or more selected components of the removed tissue fragments may be collected for implantation, preferably into the body of the patient from whom they were removed. Because the drill shaft is flexible, the surgeon can guide the cutting tip into various locations within the tissue from a small (percutaneous) incision. The surgeon can cut around arcs or angles, rather than only being able to go in a straight line, to reach any desired location, and to avoid vital tissue which would otherwise be in the cutting path. For example, when removing unwanted tissue inside a knee joint the drill shaft can deform, and is therefore less likely to damage normal tissue or joint surfaces. None of these functions is possible with a straight line system.
GENERAL DESCRIPTION OF THE INVENTION
The present invention is a percutaneous tissue removal device and method. In the preferred embodiments described below, the apparatus and method are illustrated as used for removal of bone tissue, but such description is for illustrative purposes only. The invention is not limited to the removal of bone tissue and may be used for removal of cartilage, muscle, fetal tissue, etc. It may be used to break up and remove kidney stones, in the gall bladder for a stone or tumor, in the stomach, in the colon to remove a polyp or tumor, etc. It can reach spaces not currently available with the straight line systems currently available.
A percutaneous tissue removal apparatus in accordance with the present invention includes a flexible drill shaft for insertion inside a tissue. A cutting tip is mounted on the drill shaft for cutting the tissue. Either rotating motion or reciprocating motion is transmitted to the drill shaft to move the cutting tip against the tissue to cut tissue fragments from the tissue. While cutting, the tissue fragments are removed by suction to a location outside the body. The drill shaft and cutting tip are small enough to be usable percutaneously. They may also be used for endoscopic, arthroscopic or fiberoptic or open surgery.
Because the drill shaft is flexible, the surgeon can guide the cutting tip into various locations within the tissue from one percutaneous incision. The surgeon can cut around arcs or angles, rather than only being able to go in a straight line, to reach any desired location, and to avoid vital tissue which would otherwise be in the cutting path. The flexible drill shaft also allows the surgeon when working inside a bone, for example, to keep the cutting tip away from the harder outer cortical bone and to remove only the softer inner cancellous bone. None of these features is available with the current straight line cutting devices.
The drill shaft may be made of metal, of polymeric material to reduce friction, or of a composite material. Extensive use of polymers in the drill shaft, its housing if provided, and the cutting tip area reduces friction substantially, thus requiring less energy and generating less heat within the tissue. The drill shaft is drivable by hand (for improved feel) or by motor, at variable speeds based on the need for the tissue removed.
To provide for the collection of the tissue fragments to be harvested, the removal apparatus has an axially extending suction passage along the drill shaft through which the tissue fragments are removed. The suction passage has a smooth lining to keep the tissue fragments or graft material contained and to reduce friction of the harvested tissue fragments. This lining may be the inside diameter of the flexible drill shaft itself, or may be a separate liner sleeve which can be removed and disposed of when it becomes unsanitary or clogged, without having to remove the drill shaft and cutting tip. Alternatively, if a separate guide sleeve or guide rod is used the suction passage may be formed between the drill shaft and the guide sleeve or guide rod. In such a case, the drill shaft may be solid rather than hollow.
The cutting tip is made of a material which is harder than the material to be cut. The cutting tip may be slightly larger in diameter than the drill shaft. The cutting tip may be made of a polymeric material or a composite material. Alternatively, the cutting tip may be made of a ceramic material. The cutting tip is separable from the drill shaft, and several different cutting tips may be provided in varying hardnesses, so that the surgeon can selectively remove various portions of tissue as desired.
By virtue of its flexibility, the flexible drill shaft, when removing bone tissue, may stay within the cortical confines of the bone. Alternatively, it may work with a guide device to control the location of the cutting tip within the bone. The guide means may be a guide rod extending within the flexible drill shaft, or a hollow guide sleeve outside the flexible drill shaft. The guide rod or guide sleeve may be rigid in a particular shape, to fit a particular application; or it may be bendable into a particular shape which it will hold; or it may be selectively rigidifiable into a particular shape in situ. The guide means may include structure for positioning the tip of the flexible drill shaft. The guide means may also be inserted into a separate flexible tube system to guide it to a specific location, then removed, allowing the flexible drill to be inserted.
Fluid may be injected through the flexible drill shaft to a location adjacent the cutting tip to increase the efficiency of the tissue removal and to limit thermal necrosis. Alternatively, a fluid injection passage may extend axially along the flexible drill shaft, the drill shaft. Alternatively, fluid may be injected through the suction passage, alternating with the suction. The fluid injection may be constant or it may be pulsatile in nature. If fluid injection is used, centrifuging of the harvested material may be performed.
Means for collecting one or more selected components of the harvested tissue fragments may include a known trap or filter connected to the outlet of th
Jackson Gary
Lewis William
Tarolli, Sundheim, Covell Tummino & Szabo L.L.P.
LandOfFree
Apparatus and method for tissue removal does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Apparatus and method for tissue removal, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus and method for tissue removal will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2972445