Apparatus and method for the generation, separation,...

Data processing: measuring – calibrating – or testing – Measurement system in a specific environment – Biological or biochemical

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S006120, C435S091100, C436S094000, C436S800000, C536S023100, C536S024300, C536S024330

Reexamination Certificate

active

06236945

ABSTRACT:

This specification includes a microfiche appendix containing a listing of the computer programs of this invention, this appendix comprising 2 microfiche of 173 total frames.
A portion of the disclosure of this patent document contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document of the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.
FIELD OF THE INVENTION
This invention relates to a method and apparatus for analysis of biopolymers by the electrophoretic separation of biopolymer fragments. More particularly, it relates to a method and apparatus for automated, high-capacity, concurrent analysis of multiple DNA samples.
BACKGROUND OF THE INVENTION
Molecular biology research depends on biopolymer analysis. Conventionally, for this analysis, a biopolymer sample is first fragmented into shorter length biopolymer fragments by enzymatic or chemical means. The fragments are distinctively labeled with detection labels and then separated, often electrophoretically. The fragment pattern is then detected to obtain information about the structure and nature of the original biopolymer sample. These steps are typically performed separately with human intervention required to transfer the sample from one step to another.
A well known example of biopolymer analysis is DNA sequencing. See F. Sanger, et. al., DNA Sequencing with Chain Terminating Inhibitors, 74 Proc. Nat. Acad. Sci. USA 5463 (1977); Lloyd M. Smith, et. al., Fluorescence detection in automated DNA sequence analysis, 321 Nature 674 (1986); Lloyd M. Smith, The Future of DNA Sequencing, 262 Science 530 (1993), which are incorporated herein by reference. A prevalent sequencing method comprises the following steps. A DNA sample is first amplified, that is the DNA chains are made to identically replicate, usually by the polymerase chain reaction (PCR). From the amplified sample, nested sets of DNA fragments are produced by chain terminating polymerase reactions (Sanger reactions). Each chain fragment is labeled with one of four fluorescent dyes according to the chain terminating base (either ddATP, ddCTP, ddGTP, or ddTTP). These fragments are then separated according to their molecular size by polyacrylamide gel electrophoresis and the unique dyes detected by their fluorescence. The DNA base sequence can be simply reconstructed from the detected pattern of chain fragments.
Electrophoresis is the separation of molecules by differential molecular migration in an electric field. For biopolymers, this is ordinarily performed in a polymeric gel, such as agarose or polyacrylamide, whereby separation of biopolymers with similar electric charge densities, such as DNA and RNA, ultimately is a function of molecular weight. The prevalent configuration is to have the gel disposed as a sheet between two flat, parallel, rectangular glass plates. An electric field is established along the long axis of the rectangular configuration, and molecular migration is arranged to occur simultaneously on several paths, or lanes, parallel to the electric field.
DNA sequence information is key to much modern genetics research. The Human Genome Project seeks to sequence the entire human genome of roughly three billion bases by 2006.
This sequencing goal is roughly two orders of magnitude (factor of 100) beyond the total, current yearly worldwide DNA sequencing capacity. Sequencing of other biopolymers, for example RNA or proteins, is also crucial in other fields of biology. Other DNA fragment analysis techniques, such as PCR based diagnostics, genotyping (Ziegle, J. S. et al., Application of Automated DNA Sizing Technology for Genotypeing Microsatellite Loci. Genomics, 14, 1026-1031 (1992)) and expression analysis are increasing in use and importance.
The need for methods to identify genes which are differentially expressed in specific diseases such as cancer is of paramount importance, for both the diagnosis of the disease and for therapeutic intervention. Identification of genes specifically expressed in different diseases will lead to better classification of these diseases with regard to their biological behavior. A molecular understanding of disease progression is fundamental to an understanding of a specific disease. The identification of molecular diagnostics that correlate with variations in disease state, growth potential, malignant transformation and prognosis will have tremendous implication in clinical practice, including the diagnosis and treatment of the disease.
No current method adequately or efficiently addresses the need to identify, isolate, and clone disease-specific genes. A new biopolymer fragment analysis method has been developed based on the use of arbitrarily primed PCR (Williams, J. G., Kubelik, A. R., Livak, K. J., Rafalski, J. A., and Tingey, S. V., DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18, 6531-6535 (1990); Welsh, J. and McClelland M., Genomic fingerprinting using arbitrarily primed PCR and a matrix of pairwise combinations of primers. Nucleic Acids Res., 19, 5275-9 (1991)). When applied to mRNA, samples are first reverse transcribed into cDNA and then amplified with a combination of arbitrary and specific labelled primers (Froussard, P., A random-PCR method (rPCR) to construct whole cDNA library from low amounts of RNA. Nucleic Acids Res. 20, 2900 (1992); Welsh, J. et al., Arbitrarily primed PCR fingerprinting of RNA. Nucleic Acids Res., 20, 4965-70 (1992)). The resulting labeled DNA fragments are then electrophoresed through a gel producing a “banding pattern” or “fingerprint” of the mRNA source and run in separate gel lanes (Liang, P. and Pardee, A. B., Differential Display of Eukaryotic Messenger RNA by Means of the Polymerase Chain Reaction. Science, 257, 967-971 (1992)). Differences in gene expression are then found by manually comparing the fingerprints obtained from two mRNA sources. Following this, fragments of interest are extracted from the gel. This method is severely limited by its reliance on autoradiographic methods to allow for the isolation of the genes of interest. Refinements of PCR based techniques have, however, led to the ability to produce more reproducible banding patterns, and to the use of an automated DNA sequencing machine to record the banding patterns produced with fluorescently labeled primers (Liang, P., Averboukh, L. and Pardee A. B., Distribution and cloning of eukaryotic mRNAs by means of differential display: refinements and optimization. Nucleic Acids Res. 21, 3269-3275 (1993)). However, commercial automatic sequencing instruments (Applied Biosystems Inc., Foster City, Calif., DNA sequencer) do not allow for the resolution of many dye labels or allow for the isolation of the fluorescently labeled samples after they are run. In an automated machine the sample is simply lost. Arbitrary primed PCR methods would be much more attractive if their limitations could be addressed.
To address these limitations, our invention allows these gene fragments to be detected fluorescently and to be directly isolated, without human intervention, as they are identified. This is accomplished by electrophoretically separating the individual bands, and hence the differentially expressed genes, from the rest of the sample as it is running. This approach incorporates the advantages of the PCR based methods to differential screening, while raising the level of speed, sensitivity and resolution well beyond that achievable with radiographic techniques. To insure high separation resolution, it is advantageous for the gel throughout a migration lane to be kept as uniform as possible and for the lanes to be sufficiently separated to be clearly distinguishable.
To achieve these required improvements in the analysis capacity for DNA and for other biopolymers, machines are needed for the rapid, concurrent analysis of large numbers of minute biopolymer samples. Further,

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus and method for the generation, separation,... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus and method for the generation, separation,..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus and method for the generation, separation,... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2568002

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.