Pulse or digital communications – Spread spectrum – Frequency hopping
Reexamination Certificate
2000-10-10
2004-06-29
Chin, Stephen (Department: 2634)
Pulse or digital communications
Spread spectrum
Frequency hopping
C375S134000, C375S224000, C375S356000
Reexamination Certificate
active
06757318
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates generally to network synchronization and more particularly to a method and apparatus for synchronizing with a communication network, without joining the network, by acquiring a slave clock time from a slave device and then shadowing the slave device while the slave device responds to a page for connecting to the network.
2. Description of the Prior Art
Many system standards have been developed for communication. One such system standard is known as BLUETOOTH. BLUETOOTH is a short range radio system operating in the unlicensed 2.4 GHz Industrial Scientific Medical (ISM) band using frequency hopping spread spectrum signals. The spread spectrum signals enable the system to minimize fading and reduce interference between users. The BLUETOOTH spread spectrum is designed to meet parts
15
and
18
of the Federal Communications Commission (FCC) regulations in the United States and the regulations of other regulatory agencies in other countries. The BLUETOOTH signal uses seventy-nine or twenty-three frequency hopping channels depending upon the country of operation. At any one instant of time, the signal is transmitted in a single one of the channels. Each channel has a bandwidth of one megahertz. The channels succeed each other in a pseudo-random channel hopping sequence specified by a BLUETOOTH system standard. Each successive frequency channel corresponds to a phase or time slot of the pseudo-random sequence.
A BLUETOOTH system network known as a piconet includes a single master device and up to seven active slave devices. The network topology is referred to as a star because all communication involves the master device. Slave to slave communication is not allowed. Another BLUETOOTH network, known as a private network, uses only a single master device and a single active slave device. Typically, the private master and slave devices work with a limited subset of the BLUETOOTH protocol and are provided by a manufacturer as a set.
FIG. 1A
shows a time line of communication traffic exchange in a BLUETOOTH network. Packets of information are exchanged between the master device and a selected slave device using time division duplex (TDD) with alternating master (master TX) and slave (slave TX) transmissions. Communication traffic is partitioned into time slots 625 microseconds in length for each frequency channel. Every other time slot is considered to be a master time slot. In the master time slot, the master device can transmit a master data packet addressed to a particular slave device. In the following time slot, the addressed slave device may respond to the master data packet by transmitting a slave data packet back to the master device. Transmissions in successive time slots occur on sequential frequency channels in a pseudo-random sequence shown in
FIG. 1A
in an exemplary manner as channels 79, 03, 06, 47, 18, 02, 17, and 61. The frequency channels are mapped to specific ISM band frequencies by adding a constant offset frequency that is specific to a region. In the United States and most of Europe the offset is 2402 megahertz.
FIG. 1B
shows a simplified block diagram for a BLUETOOTH device having a hop sequence generator. Both the master and the slave devices compute the successive channels from a BLUETOOTH system clock time maintained in the master device and the address identification of the master device. In order to follow the frequency hopping sequence of a particular piconet, a slave device must know both the master address and the precise system clock time. The hop sequence generators in the master and slave devices compute the frequency channels for the communication traffic from 24 bits of a 48-bit IEEE address of the master device and a 28-bit system clock time. In addition the timing of the frequency hops is based upon the system clock time. The master clock is a free running counter that increments each 312.5 microseconds (3200 Hz) or one-half of a time slot. Packet data sent in a BLUETOOTH format is scrambled through a linear feedback shift register based on the BLUETOOTH clock to reduce DC bias and improve security of the information in the data packets.
Several modes are described in the BLUETOOTH system specification. The communication traffic mode is the normal operational mode for communication between the master and slave devices that are joined or connected in the network. Modes for inquiry, inquiry scan, and inquiry response are used in a who-is-there protocol for identifying BLUETOOTH devices that are within signal range. In the inquiry mode an inquiry is broadcast on frequency hopping channels of an inquiry sequence. A recipient BLUETOOTH device is induced by the inquiry to respond with an inquiry response having the address of the recipient device and the recipient device clock time on frequency hopping channels based upon the frequency channel of the inquiry. Inquiry scan is a mode for listening for an inquiry from a BLUETOOTH device on frequency hopping inquiry listen channels in an inquiry scan sequence.
Modes for page, page scan, page response, master page frequency hop synchronization (FHS), and slave page FHS response are used for synchronizing and connecting the devices. A page from a master device starts a paging handshake by transmitting an address identification of a device being paged on frequency hopping page transmit channels of a paging sequence. Page scan is a mode for listening on frequency hopping page listen channels of a page scan sequence for a page having the listener's address identification. Page response is a mode for responding to the page on page response channels based upon the page transmit channels. Master page FHS is a mode for responding to the page response by transmitting an FHS signal on the next frequency hopping channel in the paging sequence. Slave page FHS response is a mode for connecting to the network by responding to the master page FHS response.
FIG. 2A
shows a time line of the operation of the master and slave devices during page and inquiry modes. In order to page a slave device, the master device alternately transmits (TX) pages on two successive frequency channels and then listens (LX) on two successive frequency channels for page responses. The page time period for each channel is 312.5 microseconds or one-half the normal time slot period of 625 microseconds. The slave device in page scan mode listens for the pages on successive page listen channels (LX scan k and LX scan k+1) of a page scan sequence with a time period of 1.28 seconds for each channel until a page is recognized.
FIG. 2B
shows a time line of the paging sequence for the master device when the paged slave device responds to the page. The master device transmits (TX) pages in successive page transmit channels and listens (LX) for a page response in a paging sequence. When the page response is received, the master device responds by transmitting an FHS packet (TX FHS) containing both the address of the master device and the 26 most significant bits (MSB)s of the 28 bits of the system clock time on the next channel of the paging sequence. The slave device then resolves the 2 least significant bits (LSB)s of the master time clock from the time-of-arrival of the FHS packet. The slave device now has all the information it needs for determining the channels and timing of the frequency hopping sequence and participating in communication traffic. At this point, the slave device joins the network by responding to the FHS packet.
An inquiry is similar to a page in that an inquiring device transmits inquiries on successive frequency channels in an inquiry sequence and then listens on corresponding frequency channels for inquiry responses with time periods for each channel of 312.5 microseconds. A device in inquiry scan mode listens for the inquiries on successive channels of an inquiry scan sequence with a time period of 1.28 seconds for each channel until an inquiry is recognized. When the device in inquiry scan mode recognizes the inquiry it responds by transmitti
Stavinov Evgeni
Ziegler Kevin
Chin Stephen
Computer Access Technology Corporation
Gildea David R.
Lugo David B.
LandOfFree
Apparatus and method for synchronizing with a communication... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Apparatus and method for synchronizing with a communication..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus and method for synchronizing with a communication... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3349528