Apparatus and method for surgical fastening

Elongated-member-driving apparatus – Surgical stapler – With magazine

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C227S019000

Reexamination Certificate

active

06330964

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to surgical fastening tools for fixating tissue and/or surgical materials during minimally invasive surgery, and particularly to a surgical fastening tool having a space-efficient, simplified fastening mechanism that permits deployment of the tool through a minimal opening but which also maximizes the gripping area of the applied surgical fastener. More particularly, the invention relates to a reduced diameter (5 mm) surgical fastening tool for use in hernia repair. The tool is deployed through a reduced diameter access port in the body to fasten a piece of surgical mesh to body tissue using a specially formed fastener having a maximized gripping area. The tool also has a simplified, jam-free fastening mechanism. The present invention also relates to methods for repairing a patient's hernia through a minimized diameter access port while maximizing the gripping area of the surgical fastener as well as methods for applying surgical fasteners from a miniatured device with reduced risk of jamming.
BACKGROUND OF THE INVENTION
During some surgical procedures, most notably hernia repair procedures, it is considered desirable by many practitioners to reinforce the muscle tear or other defect with a piece of surgically implantable mesh. Physicians most often use an open-weave, sintered mesh made of polypropylene and hold it in place by a type of permanent fixation method. One common method of fixation uses metallic fasteners, such as staples, which remain in the body permanently after the hernia repair. Medical device designers have created a number of larger size devices to fasten tissue and/or surgical materials to tissue during minimally invasive surgery. According to these designs, the devices typically contemplate a 10 -mm or wider application tool used to deploy a fastener. For example, Green et al., U.S. Pat. No. 5,356,064, col. 21,II. 34-53, describes a device for deployment through a 12 mm trocar guide tube wherein the device stacks a set of staples at roughly a forty-five degree angle to the axis of the device to provide greater visibility. See Green et al. FIG.
18
.
However, these tools are being judged too large for deployment according to the current minimally invasive techniques which are bringing the size of the surgical instruments and access ports down to a 5 mm diameter. Moreover, Green et al. cannot be readily scaled down because of physical limitations caused by the generally transverse stacking of fasteners. See Green et al., FIG.
18
. In addition, the design of Green et al. cannot be effectively scaled down because the fastener discharged by the application tool must be of sufficient scale to securely span across the defect and/or strands of surgical mesh and efficaciously engage sufficient tissue area for adequate gripping strength. Green et al. employs a fastener forming system which unduly reduces the finished span or width of the fastener relative to its initial width. See Green et al.,
FIGS. 20-21
, col. 22,II. 38-48. Thus, reduction in Green et al.'s tool diameter would result in an unsatisfactory gripping area for the finished fastener.
In addition to reducing fastener-gripping strength, smaller diameter tools have other problems. For example, miniaturization of the surgical fastening tool increases the likelihood of jamming, a common problem for minimally invasive surgical fastener tools, because the critical tolerances for the device's moving parts would be reduced along with the size of the instrument. Accordingly, slight changes in deployment stress and temperature can effect the mobility of the moving tool parts. The Origin Tacker, though of 5 mm diameter, employs a rotational actuation mechanism to deploy a helical fastener. Rotation increases the complexity needed for the actuation mechanism, and creates greater need to ensure reliable translation of trigger action.
What is needed is a space-efficient surgical fastening tool that minimizes its outer diameter while maximizing the gripping area and strength of the fastener. The fastening mechanism of the desired surgical fastening tool must not be complicated and should be limited to a few actuated parts to reduce the probability of jamming during minimally invasive surgery. The device should be designed to avoid double firing and incomplete firing. The device should also permit for the easy reloading of additional fasteners during extensive surgical procedures. The prior art devices are inadequate to meet these objectives.
SUMMARY OF THE INVENTION
The present invention relates to surgical fasteners, fastening tools and methods for securing tissue and/or surgical materials during minimally invasive surgery. In particular, the devices of the present invention are adapted to minimize the diameter of the surgical fastening tool while maximizing the area gripped by the fastener. Furthermore, the devices of the present invention are adapted to discharge the fastener by way of a simplified fastening mechanism with few actuated parts. The surgical materials to be fastened may be surgical mesh, sutures, prostheses, linings or the like. The tissue to be fastened may be tissue, foreign or endogenous to the patient.
In one embodiment, the apparatus includes three major elements: a fastener applicator comprising a fastener magazine; a handle portion to which the applicator is attached; and a triggering mechanism. The triggering mechanism may be housed in either the fastener applicator, the handle portion or in a combination of the two. In a first aspect of the invention, the fastener applicator has a cantilevered anvil with a cross section around which the fastener may be formed at a single focal point when the fastener is pressed by a slide. The fastener may initially be M-shaped, upside-down U-shaped or other suitable shape. In a most preferred embodiment, the anvil has a cross section that is essentially triangular and a shaping slide with a cooperating notch that is angled to closely receive the triangular cross-section of the anvil. FIG.
1
. Importantly, according to this first aspect of the invention, the single-point anvil permits the width of the slide which forms the fastener to be the same or less than the width of the stored fastener but without sacrificing the finished span (installed width) of the applied fastener and the area it encloses. An anvil with a semi-circular or other round edged cross-section may also be used in combination with a round-notched slide. The space-efficiency of the slide and anvil permits a reduction in the overall width of the fastener applicator relative to the width of the fastener. Traditional staple type surgical fasteners have a slide which, when of reduced width, unacceptably reduce the span of the applied fastener to accommodate the “horns” of the slide. See FIG.
2
.
In one embodiment, the apparatus is of unitary, non-detachable design wherein a fastener applicator, handle portion and a triggering mechanism are provided in a single integral unit. The fasteners may be stored in the handle portion of the apparatus or loaded from outside the device just prior to use. However, according to a second aspect of the invention, the applicator functions as a fastener magazine and is readily removed from or locked onto the handle portion by virtue of a novel mechanism for quick attachment and detachment. The applicator comprises a slide actuator which operates a slide in response to operation of the triggering mechanism to discharge fasteners. The novel mechanism locks the slide actuator into a secure, locked position within the detached applicator magazine so that the slide actuator is properly located to engage the motion-translating parts of the triggering mechanism of the device when attached. The novel mechanism then automatically frees the slide actuator upon attachment of the applicator to the handle thereby making the device ready for use. Specifically, the novel mechanism employs an “L-shaped” pin with a recessed region that rotates into and out of engagement with the slide actuator based

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus and method for surgical fastening does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus and method for surgical fastening, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus and method for surgical fastening will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2564499

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.