Apparatus and method for supporting the implicit structure...

Computer graphics processing and selective visual display system – Display driving control circuitry – Controlling the condition of display elements

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C345S156000, C345S173000, C345S179000

Reexamination Certificate

active

06525749

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to input and editing systems and particularly to manual data entry and gesture-based command systems employing input, editing and display functions.
BACKGROUND OF THE INVENTION
A freeform graphics system is one in which a user can, by various means, input graphical data objects into a two-dimensional space and then edit the objects and their positions in the space. The system is “freeform” in two senses. First, the graphical objects themselves may be of any shape, dependent only on the means provided by the input methods. Second, there are no constraints on where the graphical objects may be positioned in the space; the means for inputting and editing the objects allows the user to freely position and reposition objects. All of the graphical objects are independent of each other in that their relationship to each other is determined only by their placement in the 2-D space.
This second sense of freeform, which is also called “unstructured” in this document, is the more important. A simple example of a freeform graphics system is a child's “rubber stamp” graphics application, in which the user can use buttons (the rubber stamps) and a pointing device to input (“stamp”) graphic objects anywhere on the drawing surface and then use the pointing device to move the objects around on the surface. An example of a non-freeform (“structured”) system is a simple text editor, in which all the characters are organized into an underlying “string” structure.” A character cannot be placed anywhere on the 2-D display, but only in positions where it can fit into the string structure (e.g. to move some characters to the right, some “space” characters must be typed into the string to cause them to be pushed over).
A very useful type of freeform graphics system is a “scribbling” system in which the user can input freeform marks by simply drawing (“inking”) them in a freehand manner. Any such mark entered is a freeform graphical object in the system; that is, the mark can be any shape the user chooses to draw it, and it can be drawn anywhere on the drawing surface. The input can be accomplished by a variety of means of sensing a freely movable input device, such as a stylus, a mouse, or even a finger (sensed by pressure or optical means), etc.
Editing and control operations can be performed on the graphical objects in a freeform graphics system by giving commands to the system. Conmmands can be given by conventional techniques, such as keyboard-based and menu-based techniques. But in a “gesture-based” input system such as a pen-based notebook computer or large scale display known as a Liveboard (a trademark of Xerox Corporation), such control functions may be instituted by a command gesture. A command gesture is a handrawn stroke that is created with a stylus input device and interpreted by the system as designating an action for the system to perform.
A gesture-based system is capable of detecting that a user is entering a gesture command on a drawing surface instead of data usually by some action taken on the part of the user. Such an input action may entail holding or exerting pressure on a button on the stylus. The user instructs the system to execute the command by lifting the input device (e.g. stylus) from the drawing surface. Other methods are also possible. The system may recognize the input as an executable command, without any special user action, or may act in response to a double tap on the drawing surface, etc.
A common activity for users of gesture based computing systems, whether white-board-sized or notebook-sized, is informal scribbling in handwriting and sketches, whether for purposes of communicating with others or for making notes to oneself. The whiteboard system on the Liveboard is a prime example of a system to support this kind of activity. Scribbling systems treat this material as unstructured images or as collections of stroke objects.
A great deal of such scribbling activity involves generic structures—lists, outlines, text, tables, and diagrams. To be effective, scribbling systems must support the creation and editing of these structures. Without such support, for example, the simple task of moving an item in a list can be tedious (move a segment of the list to make space for the item at the new location, move the item, close up the old space). This almost always takes too much time for users to actually perform.
Users of course could be provided with a set of explicit facilities for these generic structures. Thus, for example, the user declares that he/she wants to work with a table, and the system provides a tabular array which the user can fill out and manipulate. However, the problem is that users who are working in a “scribbling manner” do not always know beforehand what structure they want. These structures are emergent. For example: users jot a couple of phrases; then they decide to make a more extensive list; then they begin to mark properties of a couple of items of the list; then they want to make these properties a second column (i.e., a table); then they want to make a sketch which violates any list or tabular convention; and so on.
Thus it is seen that the structuring is partial, both temporally and spatially. Sometimes the user wants to consider the material as a list, e.g., to re-order it, and other times he/she desires to consider it as a literal image and sketch on it. Furthermore, even if the user considers the material as a list, he/she may not want to regard the whole page as a list, e.g., just the left half of the page. It is desirable to have a system that can support this kind of fluid process. However, requiring users to explicitly declare structures often inhibits the natural flow of this kind of work.
There are scores of graphical systems supporting text, lists, outlines, tables, and diagrams. There are however very few that handle such input with a hand-held manually manipulable input device such as a stylus or pen. Usually, pen input is immediately recognized as characters, and then processed as conventional text. The commercial field of pen-based computing is very active and stroke-based outlining systems are beginning to appear. Such systems appear to be based on a notion of lined paper. The user declares a page to be a list, and then lines appear, creating a column of wide rectangular cells for the list items. See
FIG. 3
for an example of one such system. Every stroke belongs to one of the cells
50
, and in this way all strokes are grouped into list items. Every non-empty cell has a bullet
52
that represents the group of strokes in the cell
50
. There are several gestures on the lines and bullets for manipulating the list structure, e.g., a line gesture from a bullet to a line moves the item, a pigtail gesture on a bullet deletes the item, and a gesture up or down from a line moves the line up or down (i.e., changes the size of the cell).
This system as well as other conventional systems however suffer from the inability to accept, modify or alter freeform information. Such information can take the form of text, graphics, tabular data and other forms of information all includable within the foregoing formats. Conventional data entry unfortunately cannot be entered in a freehand form without constraints such as defined borders or defined input areas. Editing operations can only act upon the entire information contained within the defined borders or input areas, not individual strokes within such borders.
It is desirable to have a system that would allow data of any type to be entered in a freeform manner without defined constraints such as borders or defined input areas or structures, not necessarily visible, e.g. text, and allow editing operations to be entered in a similar manner with editing operations being determined by the entered edit commands and with the constraints determining the nature of the data arising after entry of an editing command, rather than before.
OBJECTS AND SUMMARY OF THE INVENTION
It is an object of the present invention to overcome the disadvantages

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus and method for supporting the implicit structure... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus and method for supporting the implicit structure..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus and method for supporting the implicit structure... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3150722

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.