Apparatus and method for severing a tendon used in...

Electric heating – Metal heating – By arc

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C219S121440

Reexamination Certificate

active

06380508

ABSTRACT:

TECHNICAL FIELD
The present invention relates to an apparatus and method for cutting tendons, especially post-tension tendons used in concrete structures, by using an acetylene torch or a plasma cutting torch.
BACKGROUND ART
For many years, the design of concrete structures imitated the typical steel design of column, girder and beam. With technological advances in structural concrete, however, its own form began to evolve. Concrete has the advantages of lower cost than steel, of not requiring fireproofing, and of its plasticity, a quality that lends itself to free flowing or boldly massive architectural concepts. On the other hand, structural concrete, though quite capable of carrying almost any compressive load, is extremely weak in carrying significant tensile loads. It becomes necessary, therefore, to add steel bars, called reinforcements, to concrete, thus allowing the concrete to carry the compressive forces and the steel to carry the tensile forces.
Structures of reinforced concrete may be constructed with load-bearing walls, but this method does not use the full potentialities of the concrete. The skeleton frame, in which the floors and roofs rest directly on exterior and interior reinforced-concrete columns, has proven to be most economic and popular. Reinforced concrete framing is seemingly a quite simple form of construction. First, wood or steel forms are constructed in the sizes, positions, and shapes called for by engineering and design requirements. The steel reinforcing is then placed and held in position by wires at its intersections. Devices known as chairs and spacers are used to keep the reinforcing bars apart and raised off the form work. The size and number of the steel bars depends completely upon the imposed loads and the need to transfer these loads evenly throughout the building and down to the foundation. After the reinforcing is set in place, the concrete, a mixture of water, cement, sand, and stone or aggregate, of proportions calculated to produce the required strength, is placed, care being taken to prevent voids or honeycombs.
One of the simplest designs in concrete frames is the beam-and-slab. This system follows ordinary steel design that uses concrete beams that are cast integrally with the floor slabs. The beam-and-slab system is often used in apartment buildings and other structures where the beams are not visually objectionable and can be hidden. The reinforcement is simple and the forms for casting can be utilized over and over for the same shape. The system, therefore, produces an economically viable structure. With the development of flat-slab construction, exposed beams can be eliminated. In this system, reinforcing bars are projected at right angles and in two directions from every column supporting flat slabs spanning twelve or fifteen feet in both directions.
Reinforced concrete reaches its highest potentialities when it is used in pre-stressed or post-tensioned members. Spans as great as one hundred feet can be attained in members as deep as three feet for roof loads. The basic principle is simple. In pre-stressing, reinforcing rods of high tensile strength wires are stretched to a certain determined limit and then high-strength concrete is placed around them. When the concrete has set, it holds the steel in a tight grip, preventing slippage or sagging. Post-tensioning follows the same principle, but the reinforcing tendon, usually a steel tendon, is held loosely in place while the concrete is placed around it. The reinforcing tendon is then stretched by hydraulic jacks and securely anchored into place. Pre-stressing is done with individual members in the shop and post-tensioning as part of the structure on the site.
In a typical tendon tensioning anchor assembly in such post-tensioning operations, there are provided anchors for anchoring the ends of the tendons suspended therebetween. In the course of installing the tendon tensioning anchor assembly in a concrete structure, a hydraulic jack or the like is releasably attached to one of the exposed ends of the tendon for applying a predetermined amount of tension to the tendon. When the desired amount of tension is applied to the tendon, wedges, threaded nuts, or the like, are used to capture the tendon and, as the jack is removed from the tendon, to prevent its relaxation and hold it in its stressed condition.
Metallic components within concrete structures may become exposed to many corrosive elements, such as de-icing chemicals, sea water, brackish water, or spray from these sources, as well as salt water. If this occurs, and the exposed portions of the tendon or anchor suffer corrosion, then they may become weakened due to this corrosion. The deterioration of the anchor or tendon can cause the tendons to slip, thereby losing the compressive effects on the structure, or the anchor can fracture. In addition, the large volume of by-products from the corrosive reaction is often sufficient to fracture the surrounding structure. These elements and problems can be sufficient so as to cause a premature failure of the post-tensioning system and a deterioration of the structure.
Several U.S. patents have considered the problem of anchor and tendon corrosion. For example, U.S. Pat. Nos. 4,896,470 and 5,072,558 disclose tendon tensioning anchor systems in which the metal anchor for the system is encapsulated in plastic and has a tubular portion extending outwardly towards the surface of the post-tensioned concrete body. A sealing cap is fitted to the end of the tubular portion of the plastic encapsulation to provide a fluid tight seal for protecting the post-tensioned tendon, anchor and tensioning wedges from exposure to the elements. Other prior art systems also exist in which the end of the post-tensioned tendon is severed at a point inwardly from the outer surface of the post-tensioned concrete body and means are used to protect the tendon end, anchor and tensioning wedges from exposure to the elements.
When using prior art systems for corrosion protection of the tensioning tendon and related apparatus, it is important that the tendon be terminated at a point inboard from the outside surface of the post-tensioned concrete body. This requires that the end of the tendon be cut just outboard of the tensioning wedges and within the pocket or cavity formed by the pocketformer. The most common method used in the prior art for the cutting of such tensioned tendon at this point is an acetylene torch or cutting torch. Normally, the end of the cutting torch is placed in close proximity to the face of the anchor and within the pocket. Heat is applied directly to the tendon so as to sever the tension from that portion received within the anchor. Unfortunately, the cutting of the tension with a torch at the point near the tensioning wedges can cause the tendon and wedges to become heated and can result in the loss of temper of the metal or loosening of the post-tension wedges. Alternatively, the torch is not brought into close enough proximity to the anchor such that an improper cutting of the tension occurs. In other words, the tension may be cut so that an end of the tendon extends outwardly of the pocket and outwardly of the concrete body. No techniques have been used in the past for placing such a torch in close proximity to the anchor body within the pocket without causing the torch to adversely affect the post- tensioning wedges or the integrity of the anchor.
Another technique used for the cutting of the tendon is a conventional electric saw. However, this requires that a portion of the slab or other concrete structure surrounding the anchor also be cut in order to reach the portion of the tendon which is within the pocket formed in the concrete adjacent to the anchor.
Importantly, U.S. Pat. No. 5,436,425,issued on Jul. 25, 1995 to the present inventor described a system whereby the tendon could be properly cut by using a plasma cutting torch. This method and apparatus utilized a positioning element for interconnecting the head of a plasma cutting torch with the tendon to be severed. A positio

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus and method for severing a tendon used in... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus and method for severing a tendon used in..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus and method for severing a tendon used in... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2877161

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.