Apparatus and method for remote therapy and diagnosis in...

Surgery: light – thermal – and electrical application – Light – thermal – and electrical application – Electrical therapeutic systems

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C607S030000

Reexamination Certificate

active

06418346

ABSTRACT:

THE FIELD OF THE INVENTION
The present invention relates to medical device systems. Specifically, the invention pertains to a remote bi-directional communications with one or more programmers and medical units, or related controls that are associated with implantable medical devices (IMDs). More specifically, the invention relates to a handheld or external, independent device implemented in an integrated system and method of bi-directional telecommunications between a web-based expert data center and a programmer, utilizing various types of network platforms and architecture, to implement in the IMDs, chronic monitoring, therapeutic and diagnostic procedures and data exchange remotely.
BACKGROUND OF THE INVENTION
A technology-based health care system that fully integrates the technical and social aspects of patient care and therapy should be able to flawlessly connect the client with care providers irrespective of separation distance or location of the participants. While clinicians will continue to treat patients in accordance with accepted modem medical practice, developments in communications technology are making it ever more possible to provide a seamless system of remote patient diagnostics, care and medical services in a time and place independent manner.
Prior art methods of clinical services are generally limited to in-hospital operations. For example, if a physician needs to review the performance parameters of an implantable device in a patient, it is likely that the patient has to go to the clinic. Further, if the medical conditions of a patient with an implantable device warrant a continuous monitoring or adjustment of the device, the patient would have to stay in a hospital indefinitely. Specifically, patient conditions which require chronic monitoring of the IMD present serious economic problems in the management of therapy and diagnosis on a continuous basis. Under the exemplary scenario, as the segment of the population with implanted medical devices increases, many more hospitals/clinics including service personnel will be needed to provide in-hospital service for the patients, thus escalating the cost of healthcare. Additionally the patients will be unduly restricted and inconvenienced by the need to either stay in the hospital or make very frequent visits to a clinic.
Yet another condition of the prior art practice requires that a patient visit a clinic center for occasional retrieval of data from the implanted device to assess the operations of the device and gather patient history for both clinical and research purposes. Such data is acquired by having the patient in a hospital/clinic to down load the stored data from the implantable medical device. Depending on the frequency of data collection this procedure may pose serious difficulty and inconvenience for patients who live in rural areas or have limited mobility. Similarly, in the event a need arises to upgrade the software of an implantable medical device, the patient will be required to come into the clinic or hospital to have the upgrade installed. Further, in medical practice it is an industry-wide standard to keep an accurate record of past and temporaneous procedures relating to an IMD uplink with, for example, a programmer. It is required that the report contain the identification of all the medical devices involved in any interactive procedure. Specifically, all peripheral and major devices that are used in down linking to the IMD need to be reported. Currently, such procedures are manually reported and require an operator or a medical person to diligently enter data during each procedure. One of the limitations of the problems with the reporting procedures is the fact that it is error prone and requires rechecking of the data to verify accuracy.
A further limitation of the prior art relates to the management of multiple medical devices in a single patient. Advances in modern patient therapy and treatment have made it possible to implant a number of devices in a patient. For example, IMDs such as a defibrillator or a pacer, a neural implant, a drug pump, a separate physiologic monitor and various other IMDs may be implanted in a single patient. To successfully manage the operations and assess the performance of each device in a patient with multi-implants requires a continuous update and monitoring of the devices. Further, it may be preferred to have an operable communication between the various implants to provide a coordinated clinical therapy to the patient. Thus, there is a need to monitor the IMDs including the programmer on a regular, if not a continuous, basis to ensure optimal patient care. In the absence of other alternatives, this imposes a great burden on the patient if a hospital or clinic is the only center where the necessary upgrade, follow up, evaluation and adjustment of the IMDs could be made. Further, even if feasible, the situation would require the establishment of multiple service areas or clinic centers to support the burgeoning number of multi-implant patients world-wide.
Accordingly it is vital to have a programmer and a personal data monitor (PDM) units that would connect to a remote expert data center, a remote web-based data center or a remote data center, all these terms being alternate equivalents as used herein, to provide access to the expert system and import the expertise to a local environment. Further, it is a significant advantage to have a PDM which communicates with the unregulated non-clinical sections of the IMD in addition to being communicable with the programmer and to also serve as a cost-effective mobile, handheld data transfer unit. Furthermore, it is very desirable to have a PDM system which communicates with the diagnostic section of the IMD to routinely perform diagnosis-related data exchange with the IMD. More specifically, it is highly desirable to have a PDM unit that is interactive with various peripheral communications and computer devices to promote remote delivery of patient therapy and clinical care at reasonable cost and speed.
The proliferation of patients with multi-implant medical devices worldwide has made it imperative to provide remote services to the IMDs and timely clinical care to the patient. Frequent use of programmers to communicate with the IMDs and provide various remote services, consistent with co-pending applications titled “System and Method for Transferring Information Relating to an Implantable Medical Device to a Remote Location,” filed on Jul. 21, 1999, Ser. No. 09/358,081; “Apparatus and Method for Remote Troubleshooting, Maintenance and Upgrade of Implantable Device Systems,” filed on Oct. 26, 1999, Ser. No. 09/426,741; “Tactile Feedback for Indicating Validity of Communication Link with an Implantable Medical Device,” filed Oct. 29, 1999, Ser. No. 09/430,708; “Apparatus and Method for Automated Invoicing of Medical Device Systems,” filed Oct. 29, 1999, Ser. No. 09/430,208; “Apparatus and Method for Remote Self-identification of Components in Medical Device Systems,” filed Oct. 29, 1999, Ser. No. 09/429,956; “Apparatus and Method to Automate Remote Software Updates of Medical Device Systems,” filed Oct. 29, 1999, Ser. No. 09/429,960; “Method and Apparatus to Secure Data Transfer From Medical Device Systems,” filed Nov. 2, 1999, Ser. No. 09/431,881; “Implantable Medical Device Programming Apparatus Having An Auxiliary Component Storage Compartment,” filed Nov. 4, 1999, Ser. No. 09/433,477; and “Remote Delivery Of Software-Based Training For Implantable Medical Device Systems,” filed Nov. 11, 1999, Ser. No. 09/437,615 which are all incorporated by reference herein in their entirety, has become an important aspect of patient care. Thus, in light of the referenced disclosures, use of a PDM system as an interface mobile unit between an IMD and an expert data center is a significant advance over the prior art.
The prior art provides various types of remote sensing and communications with an implanted medical device. One such system is, for example, disclosed in Funke, U.S. Pat. No. 4,987,897 issued Jan. 29, 1991. This

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus and method for remote therapy and diagnosis in... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus and method for remote therapy and diagnosis in..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus and method for remote therapy and diagnosis in... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2841620

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.