Apparatus and method for reducing subcutaneous fat deposits...

Surgery: light – thermal – and electrical application – Light – thermal – and electrical application – Electrical therapeutic systems

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C607S046000, C607S063000, C607S074000

Reexamination Certificate

active

06697670

ABSTRACT:

1. FIELD OF INVENTION
The present invention relates generally to electroporation in-vivo and specifically to apparatus and method for reducing subcutaneous fat deposits and/or for performing virtual face lifts and/or body sculpturing.
2. BACKGROUND OF INVENTION
“Cosmetic surgery” is a phrase used to describe broadly surgical changes made to a human body with the usual, though not always, justification of enhancing appearance. This area of medical practice constitutes an ever-growing industry around the world. Obviously, where such a procedure fails to deliver an enhanced appearance, the procedure fails to meet the desired goal. One of the reasons that the majority of current procedures fail to deliver upon their promise is that, for the most part, current procedures are invasive, requiring incisions and suturing, and can have serious and unpleasant side effects, including but not limited to scarring, infection, and loss of sensation.
One of the more common forms of cosmetic surgery is the “face-lift.” A face-lift is intended to enhance facial appearance by removing excess facial skin and tightening the remaining skin, thus removing wrinkles. A face-lift is traditionally performed by cutting and removing portions of the skin and underlying tissues on the face and neck. Two incisions are made around the ears and the skin on the face and neck is separated from the subcutaneous tissues. The skin is stretched, excess tissue and skin are removed by cutting with a scissors or scalpel, and the skin is pulled back and sutured around the ears. The tissue tightening occurs after healing of the incisions because less skin covers the same area of the face and neck and also because of the scars formed on the injured areas are contracting during the healing process.
Traditional face-lift procedures are not without potential drawbacks and side effects. One drawback of traditional cosmetic surgery is related to the use of scalpel and scissors. The use of these devices sometimes leads to significant bleeding, nerve damage, possible infection and/or lack of blood supply to some areas on the skin after operation. Discoloration of the skin, alopecia (boldness), is another possible side effect of the standard cosmetic surgery. The overall quality of the results of the surgery is also sometimes disappointing to the patients because of possible over-corrections, leading to undesired changes in the facial expression. Additionally, face-lift procedures require a long recovery period before swelling and bruising subside.
The use of lasers to improve the appearance of the skin has been also developed. Traditional laser resurfacing involves application of laser radiation to the external layer of the skin—the epidermis. Destruction of the epidermis leads to rejuvenation of the epidermis layer. The drawback of the laser resurfacing procedure is possible discoloration of the skin (red face) that can be permanent.
Another laser procedure involves using optical fibers for irradiation of the subcutaneous tissues, such as disclosed in U.S. Pat. No. Re36,903. This procedure is invasive and requires multiple surgical incisions for introduction of the optical fibers under the skin. The fibers deliver pulsed optical radiation that destroys the subcutaneous tissues as the tip of the fiber moves along predetermined lines on the face or neck. Debulking the subcutaneous fat and limited injury to the dermis along the multiple lines of the laser treatment results in contraction of the skin during the healing process, ultimately providing the face lift. The drawback of the method is its high price and possibility of infection.
Electrosurgical devices and methods utilizing high frequency electrical energy to treat a patient's skin, including resurfacing procedures and removal of pigmentation, scars, tattoos and hairs have been developed lately, such as disclosed in U.S. Pat. No. 6,264,652. The principle drawback of this technology is collateral damage to the surrounding and underlying tissues, which can lead to forming scars and skin discoloration.
Other forms of cosmetic surgery are also known. One example is liposuction, which is an invasive procedure that involves inserting a suction device under the skin and removing fat tissues. As with other invasive surgical procedures, there is always a risk of infection. In addition, because of the invasive nature of the procedure, physicians usually try to minimize the number of times the procedure must be performed and thus will remove as much fat tissue as possible during each procedure. Unfortunately, this procedure has resulted in patient deaths when too much tissue was removed. Assuming successful removal of excess fat tissue, further invasive surgery may be required to accomplish desired skin tightening.
The prior art to date, then, does not meet the desired goal of performing cosmetic surgery in a non-invasive manner while causing minimal or no scarring of the exterior surface of the skin and at the same time resulting in the skin tightening.
The term “electroporation” (EP) is used herein to refer to the use of a pulsed electric field to induce microscopic pores in the membranes of living cells. Living cells include a biological membrane, also commonly called a cell wall, that separates the inner volume of a cell, or cytosol, from the extracellular space, which is filled with lymph. This membrane performs several important functions, not the least of which is maintaining gradients of concentration of essential metabolic agents across the membrane. This task is performed by active protein transporters, built in the membrane and providing transport of the metabolites via controlled openings in the membrane. Inducing relatively large pores in the cell membrane by electroporation creates the opportunity for a fluid communication through the pores between the cytosol and the extracellular space that may lead to a drastic reduction of these vitally important gradients of concentrations of the metabolic agents. Uncontrolled exchange of metabolic agents, such as ions of sodium, potassium, and calcium between a living cell and the extracellular space imposes on the cell intensive biochemical stress.
When a cell is undergoing biochemical stresses the major biochemical parameters of the cell are out of equilibrium and the cell cannot perform its routine functions. In an attempt to repair itself, the cell starts worling in a damage control mode. The active protein transporters, or pumps, routinely providing transport of various metabolic agents, especially proteins, across membranes, use the energy of hydrogen or sodium positive ions passing from a positive potential of the intracellular space to a negative potential of the cytosol, or for the opposite direction the energy of a negative chlorine ion. This energy supply is provided by maintaining the potential difference across the membrane which, in turn, is linked to the difference in concentrations of sodium and potassium ions across the membrane. When this potential difference is too low, thousands of the active transporters find themselves out of power. Invasion of very high concentration of calcium ions from the interstitial space between cells, where the calcium ion concentration is about 100 times higher than in the cytosol, triggers an emergency production of actin filaments across the large pores in the membrane in an attempt of the cell to bridge the edges of the pores, pull the edges together, and thereby seal the membrane. In muscle cells the calcium ion invasion may cause lethal structural damage by forcing the cell to over-contract and rupture itself. Small pores in the membrane created by a relatively short electric pulse can reseal themselves spontaneously and almost instantaneously after the removal of electric field. No significant damage to the cell is done in this case. Contrary to that, larger pores may become meta-stable with very long life time and cause irreversible damage. It can be said that, depending on the number, effective diameter and life time of pores in the membrane, electroporation of the cell m

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus and method for reducing subcutaneous fat deposits... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus and method for reducing subcutaneous fat deposits..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus and method for reducing subcutaneous fat deposits... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3343893

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.