Pumps – Condition responsive control of pump drive motor – By control of electric or magnetic drive motor
Reexamination Certificate
1999-12-21
2001-07-31
Walberg, Teresa (Department: 3742)
Pumps
Condition responsive control of pump drive motor
By control of electric or magnetic drive motor
Reexamination Certificate
active
06267559
ABSTRACT:
TECHNICAL FIELD
The present invention relates generally to linear peristaltic pumps and in particular to a torque compensation system and a power control feedback system, used to reduce power consumption in a linear peristaltic pump.
BACKGROUND OF THE INVENTION
Various devices have been developed to improve the administration of intravenous (IV) fluids to patients in a controlled and accurate manner. One such device, is the peristaltic infusion pump. The peristaltic pump mechanism typically operates a series of fingers or rollers which deform and occlude a resiliently deformable IV drip tube at multiple points sequentially along the tube's length. These occlusions form a wave like motion which forces the IV fluid under positive pressure along the tube. The flow rate and hence dosage of the liquid is controlled by adjusting the speed of the pumping mechanism.
The finger type peristaltic pump typically comprises a motor, a set of gears, a cam shaft, a plurality of cams and a plurality of cam following fingers as per the assignee's invention described in U.S. Pat. No. 5,741,121. The finger type peristaltic pump is especially well suited for medical applications as only the tube comes into contact with the fluid, eliminating the risk of the pump contaminating the fluid, or the fluid contaminating the pump. Another advantage for medical applications is that fragile blood cells are not damaged by the pump.
An infusion pump occasionally needs to operate on Direct Current (DC), and not on Alternating Current (AC), such as for example in emergencies or where a battery needs to be used where mains power is not accessible or available. In these situations, power consumption is vital.
The fingers or cam followers of the finger type peristaltic pump are typically driven by rotating cams with varying profiles. In order to maintain a constant and accurate fluid flow and to reduce power consumption as well as to reduce audible noise and vibration at the motor, it is desirable that the cams on the shaft, rotate smoothly at a controlled speed. As the cam followers contact and apply a force to the cams, the cams in turn apply a tangential force to the shaft which produces a rotational torque tending either to aid or to impede the rotation of the shaft. This torque therefore causes variations in load presented to the motor. Such load changes affect the power consumption of the motor and may in turn adversely impact audible noise and the accuracy with which the pump delivers fluid.
NATWICK (U.S. Pat. Nos. 5,357,827 and 5,488,769) teaches an infusion pump incorporating a torque compensating cam. The purpose of the torque compensating cam in NATWICK, is however to aid in keeping the motor of the pump running at a constant rate, and not to aid power consumption.
Many high speed devices and machines make use of drive shafts to run various power take-off devices. The drive shafts of these machines experience variable torque at each torque load point where a power take-off device is connected to the shaft. In high speed engines, such as for example internal combustion engines, variable torque can cause angular twisting of the drive shaft which leads to fatigue and wear on both the drive shaft and the driven components. It is well known to use compensation cams in such applications to reduce the torque applied to the engine shaft (see U.S. Pat. Nos. 5,040,500 and 5,544,537). The purpose of using compensation cams in such applications is to prolong the life of the cam shaft by reducing vibration and wear, and not to reduce power consumption.
SUMMARY OF THE INVENTION
According to the invention there is provided a linear peristaltic infusion pump which includes a drive means, such as an electric stepper motor, which is operatively connected to a cam shaft with multiple cams positioned thereon. Numerous cam followers are, in turn, operatively connected to each corresponding cam. A plurality of elongate fingers engage corresponding cam followers and are capable of at least partly occluding an intravenous drip tube at multiple points along the tube's path. Most importantly, the pump also includes a power reduction system.
In one embodiment of the invention, the power reduction system comprises a torque compensation system. The torque compensation system comprises a torque compensation cam positioned on the cam shaft, in combination with a torque compensation cam follower which cooperates with the torque compensation cam. An energy storage element, such as a mechanical spring, forcibly engages the torque compensation cam follower against the torque compensation cam to assist the motor while it is working against a rising cam follower. The torque compensation system therefore decreases torque produced at the motor reducing power consumption of the pump.
In another embodiment of the invention, the power reduction system also includes a power feedback control system. The power feedback control system comprises a variable output power supply, which controls the power supplied to said motor, a transducer for measuring excess power in the system and a controller. The controller is capable of dynamically adjusting the variable output power supply based on the measured excess power and a predetermined desired power. The predetermined desired power is set by software control for a specific pumping rate set by the user of the pump. The power feedback control system optimally adjusts the power supplied to the drive means so as to reduce overall power consumption of the pump.
According to the invention there is further provided a method of reducing the power consumption of a peristaltic infusion pump by utilizing the above mentioned feedback control system. The user sets a desired pumping rate, from which a desired power value is determined. Using a sensor or a transducer, any excess power drawn by the motor caused by torque loading is measured. The excess power value in combination with the predetermined desired power is used by a controller to form a new power value which is fed into the variable power supply so as to adjust the power supplied to the motor.
REFERENCES:
patent: 6106249 (2000-08-01), Barak
Mossman John Archie
Woolf Darin Kent
Alaris Medical Systems, Inc.
Patel Vinod D
Pennie & Edmonds LLP
Walberg Teresa
LandOfFree
Apparatus and method for reducing power consumption in a... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Apparatus and method for reducing power consumption in a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus and method for reducing power consumption in a... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2491466