Chemical apparatus and process disinfecting – deodorizing – preser – Chemical reactor – With means applying electromagnetic wave energy or...
Reexamination Certificate
2000-06-05
2003-04-01
Diamond, Alan (Department: 1753)
Chemical apparatus and process disinfecting, deodorizing, preser
Chemical reactor
With means applying electromagnetic wave energy or...
C422S186220, C422S186230, C422S186260, C422S186270, C204S164000, C204S165000, C204S168000
Reexamination Certificate
active
06540966
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention is dramatically more efficient than those disclosed in prior art, such as U.S. Pat. Nos. 603,058 to H. Eldridge; 5,159,900 to W. A. Dammann and D. Wallman; 5,435,274 to W. H. Richardson, Jr.; 5,417,817 to W. A. Dammann and D. Wailman; 5,692,459 to W. H. Richardson, Jr.; 5,792,325 to W. H. Richardson, Jr.
The processes as per the latter prior art patents have the following main drawbacks which have prevented their being suitable for industrial and consumer applications: 1) the gas produced is environmentally unacceptable, because, according to numerous measurements, its exhaust contains 4% to 8% more carbon dioxide than fossil fuel exhaust; and 2) the gas produced is industrially unacceptable, because, also according to various measurements, its production rate is excessively slow due to the burning by the arc of the hydrogen and oxygen back to water, as illustrated by the typical large glow of underwater arcs.
SUMMARY OF THE INVENTION
This invention includes: a new process for flowing the liquid waste through electric arcs; equipment and process for the total recycling of liquid waste which cannot be even partially disposed in the environment, into a usable clean burning gas, a usable large source of heat, and solid precipitates usable for industrial applications; equipment and process for recycling biologically contaminated liquid waste, such as town, municipal, farm, industrial or consumer sewage, for the production of usable combustible gas, nutrient rich water usable for irrigation, and solid precipitates usable as fertilizers.
Car dealers, automotive service stations, municipalities, industries, farms, and any other entity releasing liquid waste are turned by this invention into a producer of clean fuel via an equipment which has essentially the dimension of a desk.
Water is known to be one of the best electric insulators. Yet, under an electric arc, the resistance of water collapses to values of the order of fractional Ohms, which low value of the resistance further decrease with the increase of the Kwh. It is evident that, under these conditions, the electric arc within water is one of the best known superconducting conditions at high temperature.
In fact, the flow of the liquid waste to be recycled through the electric arc, pushes a plasma created by the energized arc away from the arc on a continuous basis. Following the displacement of said plasma from the immediate vicinity of the electrodes tips, estimated to be a displacement of the order of ⅛″, the plasma instantly cools down because the surrounding liquid is relatively very cold, implying a transition from 7,000 degrees F. to about 200 degrees F.
The present invention provides equipment and processes for producing a clean burning combustible gas and further provides heat energy from the large amount of heat acquired by the liquid, which can be captured and utilized with heat exchangers, radiators and other means known in the art.
For the case of the separation of the water via the PlasmaArcFlow Reactor with carbon anode, the cooled down plasma is formed by atoms of hydrogen, oxygen and carbon. Due to the much bigger affinity of carbon and oxygen, as compared to those of hydrogen and oxygen or hydrogen and carbon, the carbon instantly removes all available oxygen by forming the combustible gas CO. The PlasmaArcFlow then prevents CO to be oxidized by the electric arc into CO2. When the impurity in the water and in the carbon rod is ignorable, and under the maximal possible use of the PlasmaArcFlow, the resulting combustible gas is composed of a mixture essentially 50% of H2 and 50% CO, by volume. For the total recycling of liquid waste of fossil fuel origin, such as automotive antifreeze and oil waste, the principal constituents of the produced combustible gas remain H2 and CO, although in different proportions, such as 40% H2, 50% CO, 5% O2 and the remaining components being inert gases. Alternatively, the principal constituents of the produced combustible gas are about 40% H2, about 55% CO, about 3% CO2, and about 2% O2.
The combustion exhaust of the produced combustible gas from pure water composed 50% of H2 and 50% CO is therefore made of water vapor in approximately 60%, 20% carbon in solid form, 4% to 6% CO2, the balance being given by atmospheric gases, including nitrogen and possible impurities. In this way, the exhaust has no carcinogenic or other toxic substances, contains from ½ to ⅓ the CO2 of fossil fuel exhaust, and the oxygen consumption is dramatically less than the alarming oxygen depletion caused by the combustion of fossil fuels, currently running at the equivalent of about 72 million of oil barrels per day.
The exhaust of the combustible gas produced by the recycling of contaminated liquid waste is considerably better than that from the separation of the water, due to the larger O2 content. In fact, the exhaust is given by about 50% water vapor, 20% carbon in solid form, 15% oxygen, 4% to 6% CO2, and the rest is given by atmospheric gases. Alternatively, the exhaust can be about 60% water vapor, about 15% oxygen, about 15% carbon in solid form, about 5% CO2, and the rest, being general atmospheric gases.
In conclusion, the combustible gas produced by the invention herein is an environmentally best available fuel, which can be used in any application currently served by fossil fuels, including metal cutting, heating, cooking, automotive and truck uses.
As also indicated earlier, the heat produced by the inventive apparatus and process is acquired by the liquid waste during its recirculating flow through the electric arc, and can be utilized by separately flowing said liquid waste in an outside radiator, heat exchanger, or other conventional utilization of heat. For this reason, apparatus according to this invention generally have two different and independent recirculating systems individually served by pumps, one for the flowing of the liquid waste through the electric arc, and a separate one for the flowing of the same liquid waste through an outside heat utilization system.
Extensive experimentation and tests have established that the inventive systems are more effective operationally when the liquid waste is hot as compared to the same operation when the liquid waste is kept cold. Therefore, the system is operated at a minimal temperature of the liquid waste which depends on the desired application.
When operating at atmospheric pressure, the present invention for the total recycling of liquid waste is run at a constant liquid waste temperature of about 180 degrees F., while all heat in excess of that temperature is utilized with said external systems. In this case, the inventive system can be used as heaters of rooms or of buildings either via radiators with fans directly connected to the reactors as indicated above, or via the use of the equipment to heat up water via heat exchangers which hot water is then pumped through conventional heaters in individual rooms.
This invention can also be used to produce steam. This application is achieved by operating the system at pressures of 15 to 20 psi for the recycling of liquid waste such as automotive antifreeze or oil waste, in which case said liquid waste can be kept at the minimal temperature of 400 degrees F. without boiling, while dissipating via a heat exchanger all heat in excess of said temperature. Since, under the above conditions, the heat exchanger operates at a temperature bigger than the boiling temperature of water, the system can indeed produce steam in a continuous basis.
When the system is operated at atmospheric level, the production of the combustible gas is almost explosive since we have the conversion of one unit of volume of the liquid into about 1,800 units of volume of the gas, as per established knowledge in the transition of state from liquids to gas. It then follows that the production of the gas displaces the liquids, and the arc occurs for about 60% of the time within the gas, rather than within the liquid.
The increase of the pressure in t
Diamond Alan
Hadronic Press Inc.
LaPointe Dennis G.
Mason Law, P.A.
LandOfFree
Apparatus and method for recycling contaminated liquids does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Apparatus and method for recycling contaminated liquids, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus and method for recycling contaminated liquids will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3082875