Communications: electrical – Aircraft alarm or indicating systems – Land-based landing guidance
Reexamination Certificate
2000-03-30
2003-01-21
Swarthout, Brent A. (Department: 2632)
Communications: electrical
Aircraft alarm or indicating systems
Land-based landing guidance
C340S953000, C340S955000
Reexamination Certificate
active
06509844
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates generally to landing systems used by aircraft and, more particularly, to landing systems used to establish a temporary landing zone for an aircraft, such as helicopter, needing to land in a non-traditional landing spot or under adverse conditions. Further still, the present invention relates to a portable VASI system for use as a temporary or adjustable VASI device.
Aircraft, such as fixed wing airplanes and rotary wing craft such as helicopters, enjoy an important role in both law enforcement and medical assistance. For example, both fixed wing and rotary wing aircraft are utilized to locate criminal suspects during a chase. In a chase setting, a helicopter is typically used to track a crime suspect until law enforcement officers on the ground can locate and apprehend the suspect. During the day, the sight of the helicopter hovering in a given area along with communication between a spotter in the helicopter and the law enforcement officers on the ground aid the officers on the ground in tracking, locating and apprehending the suspect. Likewise, at night, the helicopter will use a spot light to locate a suspect for apprehension.
Aircraft also serve an important function in aiding medical emergencies. Aircraft are used to transport supplies and medical personnel to an accident site and to transport accident victims that are severely injured to medical centers for emergency treatment. Helicopters are often used for medical evacuation of injured persons from an accident scene to a medical center where time is of the essence. These situations typically are when the injured person is suffering a life threatening injury or is in such a remote area that the long trip in a vehicle would either aggravate the injury or prevent other treatment from occurring in a prompt manner.
Unfortunately, helicopters are limited in their operation due to the flight conditions at the time. Specifically, night flights and flying in inclement weather can be dangerous to not only the pilot, but the crew on the helicopter or on the ground at the accident site. This is so because a helicopter needs to land proximate the accident site in order to pick up the injured persons for transport. For a helicopter to land either at night or in inclement weather, a safe landing zone must be identified and marked out in such a way as to allow the pilot to land. Currently, such safe landing zones are difficult to outline and they require at least six skilled landing members to secure a useful landing site. If the weather is extremely violent, landings can be so impractical in view of the current state of the art that the helicopter is useless in transporting the injured persons to the medical center.
Not only are helicopters prone to accidents at unconventional landing sites, but pilots that land aircraft utilizing a visual aid slope indicator (VASI) system have trouble where the VASI is fixed and a portion of the airstrip is under repair or blocked off temporarily. Further still, the pilot may need to land the aircraft in an unfamiliar landing zone and a VASI device would be useful in signaling to the pilot that the strip is clear for landing and that no obstacles are in place or are identified and placed beyond interference with the intended landing location for the aircraft. No such VASI system currently is known that can be moved and set up temporarily to aid a pilot in landing an aircraft where visual indication of known hazards is accounted.
Accordingly, there is a need for a new method or system of signaling a safe landing zone to a helicopter pilot during an emergency landing procedure at an emergency site, such as one involving picking up an injured person for transport to the appropriate medical center. Furthermore, what is needed is a landing aid that can be operated by a minimum number of personnel and is portable to any remote location at which the landing of a helicopter is anticipated. Furthermore, what is needed is a landing aid device that is consistent with standards for helicopter landings, can be set up quickly, and be operated in a manner useful to the pilot to aid the pilot to land. Additionally, what is needed is a VASI system that warns a pilot of known obstacles in the landing path to make landings safer where the site is either temporary or has been blocked at the time access is needed.
SUMMARY OF THE INVENTION
According to the present invention, a portable landing aid apparatus is disclosed along with a method for operation in aiding a pilot of a helicopter to land the helicopter in adverse conditions, such as at night or in inclement weather, at a non-traditional landing site. The landing aid apparatus comprises a plurality of light units that are powered by a portable power supply, such as a battery or an emergency vehicle at the site. Each light unit further includes a white strobe light, a steady burn amber lamp, and a green strobe light. The white strobe light is utilized as a day locator, while the green strobe light is utilized as a night locator. The steady burn amber light is used as a landing locator. The white strobe light is utilized during the day as it is highly visible from long distances and does not interfere with the pilot's vision. The green strobe light is used at night as it is highly visible at night and does not interfere with the pilot's night vision. The amber steady burn locator outlines the landing zone to be utilized by the pilot in landing the helicopter. Each of the plurality of light units is placed within a heavily-weighted base that is made of a material that remains prone on the ground without being blown away by the down wash from the helicopter rotors.
The light elements within the light unit are placed in a raised position so they provide a 360 degree field of view around the light unit, thereby serving as a beacon to all points approaching the landing location. The raised light elements allow the lights to be viewed from any direction approaching the landing zone. A clear dome cover is placed over the lighting elements to protect them from breaking. Each lighting unit is electrically connected to the power supply via a flexible power cable.
A minimum of two light units can serve as landing lights to aid the helicopter pilot to locate the landing site and land the helicopter in the target landing zone. Additional lighting units are desirable to improve the actual target landing zone. In one embodiment, six light units are arranged in an arrow-like configuration. Two light units are spaced far enough apart from one another so the helicopter can land between them. These two light units form the base points of the arrow. Two additional light units are spaced apart from each other a shorter distance than the first two light units, but far enough that the helicopter can land between them. The last two light units are placed at the point of the arrow in a line substantially perpendicular to a line drawn between the first two light units or even the second two light units. These last two units serve to align the helicopter during landing.
An operator operates a control box that is used to turn off or on the light elements within each of the light units. The control box can have a separate on/off switch for either the white strobe light, the green strobe light, or the amber steady burn lights. This is useful in that the strobe lights typically are turned off after the pilot has located the landing zone thus using only the amber lights to pilot the helicopter to a safe landing.
REFERENCES:
patent: 3519984 (1970-07-01), Zychal
patent: 3771120 (1973-11-01), Bonazoli et al.
patent: 3939571 (1976-02-01), Studdard
patent: 4532512 (1985-07-01), Tanner
patent: 4590471 (1986-05-01), Pieroway et al.
patent: 4827245 (1989-05-01), Lipman
patent: 4985813 (1991-01-01), Putman
patent: 5559510 (1996-09-01), Strong, III et al.
patent: 6174070 (2001-01-01), Takamura et al.
“Flight Site: The Landing Zone/Scene Safety Kit,” http://www.priority1lss.com/flightsite.htm (2 pages).
“TurboFlare: The Toughest, Smartest
Broadbent Berne S.
Swarthout Brent A.
LandOfFree
Apparatus and method for providing a portable landing zone does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Apparatus and method for providing a portable landing zone, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus and method for providing a portable landing zone will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3021293