Apparatus and method for propelling a data sensing apparatus...

Ordnance – Well perforators

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C102S326000, C102S328000, C175S004580, C340S856200, C089S001151

Reexamination Certificate

active

06467387

ABSTRACT:

BACKGROUND OF INVENTION
This invention relates generally to the monitoring of subsurface geologic formations of interest, and more particularly to ballistic deployment of a projectile data sensing apparatus into a subsurface geologic formation of interest to enable such monitoring.
Wells are drilled to recover naturally occurring deposits of hydrocarbons and other materials trapped in subsurface geological formations in the earth's crust. A slender well is drilled into the ground and directed from a drilling rig on the surface of the earth or a body of water (e.g., an ocean) to a targeted subsurface location. In conventional “rotary drilling” operations, the drilling rig rotates a drill string comprised of tubular joints of steel drill pipe connected together to form a drill string. The drill string is used to turn a bottom hole assembly (BHA) and a drill bit that is connected to the lower end of the drill string. During drilling operations, a drilling fluid, commonly referred to as drilling mud, is pumped and circulated down the interior of the drill string, through the BHA, downhole tools and the drill bit. Drilling mud flows back to the surface in the annulus between the drill string and the cased or uncased wellbore.
During the drilling phase the weight of the drilling mud is closely managed to ensure safety of the drilling rig and quality of the well. The drilling mud density is frequently adjusted using weighting agents designed to maintain the density of the drilling mud within a certain favorable range. The favorable range of mud density during drilling depends, at least in part, on the pressure of the fluids in the pores of the formation. The mud density should be sufficient to hydrostatically balance the formation pressure in order to stabilize the well and prevent unwanted entry of formation fluids into the wellbore. However, excessive mud density causes drilling mud or wellbore fluids to enter the formations possibly damaging the formation and causing well control problems due to loss of fluid from the wellbore. During drilling operations, it is highly beneficial to obtain and analyze formation data such as pressure and temperature.
The availability of reliable formation data is also a benefit after a well enters the production phase. Monitoring formation pressure and temperature, and combining that formation data with measured production and other surface data, enables engineers to better implement an optimal production flowstream designed to maximize recovery from the well. Engineers may also correlate data from adjacent production and injection wells to analyze and predict movement and depletion of reserves produced or flooded by wells completed in the formation of interest.
Existing techniques for testing formations generally include using retrievable formation testing tools. These conventional formation testing tools can be run on wireline or on the drill string for gathering formation data by positioning the formation tester adjacent to the formation of interest in the well and monitoring conditions. Formation conditions in an uncased well may be monitored with wireline formation testing tools such as those described in U.S. Pat. Nos. 3,934,468, 4,860,581, 4,893,505, 4,936,139 and 5,622,223. These methods consume substantial rig time for the removal of the drill string from the well, running the formation testing tool into the wellbore to the formation of interest to acquire formation data, then retrieving the formation tester from the well and, for further drilling or production, the drill string or production tubing must be run into the well. Also, the data available using conventional formation testing tools is available only while the retrievable formation tester is adjacent to the formation of interest.
There are also formation testing tools and methods that are intended for use in cased wellbores such as those described in U.S. Pat. Nos. 5,065,619, 5,195,588 and 5,692,565. A problem inherent for formation testers designed for use in cased wells is that most of these tools involve attempts to patch or plug casing perforations made to afford direct measure of formation fluid pressure.
Like the formation testers run into uncased wells, the formation testers for use in cased wellbores are retrievable and running of the formation tester requires expensive tripping of the drill pipe, and formation data is available only for the time the formation tester is positioned adjacent to the formation of interest.
U.S. patent application Ser. No. 09/293,859, now U.S. Pat. No. 6,234,257 filed on Apr. 16, 1999 and incorporated by reference herein, describes an impact resistant deployable formation data sensing apparatus that may be deployed into a selected formation to provide intermittent or continuous formation data by wireless transmission to data receivers. U.S. application Ser. No. 09/458,764, now abandoned filed on Dec. 10, 1999 and incorporated herein by reference, describes a propellant composition designed for use in such deployment. The present invention also relates to the effective deployment of such data sensing apparatuses into the formation of interest to intermittently or continuously gather and transmit formation data through RF, electromagnetic or telemetric communication to a data receiver. The use of deployable data sensing apparatuses for these purposes is further described in U.S. Pat. Nos. 6,028,534 and 6,070,662, the contents of which are also incorporated herein by reference.
It is an object of the present invention to provide a method and apparatus for deploying a data sensing apparatus into a subsurface geologic formation of interest from a downhole tool to obtain intermittent or continuous monitoring of formation data whether wireline or drill pipe is present in the well bore, thus eliminating or minimizing the need for tripping the well for the sole purpose of running a formation tester.
It is a further object of the present invention to provide a method and apparatus for deploying a data sensing apparatus downhole via either a wireline or a drill string.
It is a further object of the present invention to provide a method and apparatus for deploying a data sensing apparatus into a subsurface geologic formation of interest to obtain intermittent or continuous monitoring of formation data and optimized operation of production or injection from or to the well for optimal depletion of reserves from the monitored formation.
It is a further object of the present invention to provide a durable and reusable structure for deploying data sensing apparatuses into a subsurface geologic formation of interest whereby a high g-force acceleration of a bullet-shaped data sensing apparatus is reliably induced to ensure sufficient penetration and deployment of the data sensing apparatus into the formation rock matrix.
It is a further object of the present invention to provide a data sensing apparatus drill collar propellant gun that can tolerate and operate under high pressures and temperatures encountered in deep wells, and withstand the extremely high pressures and temperatures associated with the use of high energy chemical propellants to propel the data sensing apparatus into a rock formation.
It is a further object of the present invention to provide a data sensing apparatus drill collar propellant gun that is adapted to survive, without deformation, damage, or failure, the high g-forces associated with projectile launch and impact, and the pressures and temperatures resulting from the launch and impact of the data sensing apparatus.
It is a further object of the present invention to provide a method and apparatus for deploying data sensing apparatuses to a satisfactory radial penetration depth into a targeted formation rock matrix to prevent interference with subsequent well operations or damage to the data sensing apparatus during subsequent well operations.
SUMMARY OF INVENTION
The above-described objects, as well as other objects and advantages, are achieved through the present invention by a method and apparatus for deploying a data sensing app

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus and method for propelling a data sensing apparatus... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus and method for propelling a data sensing apparatus..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus and method for propelling a data sensing apparatus... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2973654

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.