Apparatus and method for printing two colors in a single...

Incremental printing of symbolic information – Thermal marking apparatus or processes

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06674455

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to a two-color printing process, and more particularly, to a method for carrying out a two-color printing process within a thermal printer suitable for use in a point-of-sale environment.
2. Background Art
A thermal printer conventionally employs a single printhead to print on a paper web moved past the printhead. The printhead includes number of pixel-sized heating elements extending in a line across the width of the paper web, arranged to contact the paper web. The heating elements are individually electrically driven in a pattern used to produce the desired printed image.
Printing within a conventional thermal printer is by either a direct or a transfer process. In the direct process, the paper is coated with a material which changes color, typically turning black, upon the application of heat. (Black is herein referenced as a “color,” since it is formed by printing processes which can alternately be used to produced an individual color.) Thus, a black pattern is typically formed on the surface of the paper in accordance with the pattern in which the heating elements are driven as the paper is moved past the printhead.
On the other hand, in the transfer process, a film web, lying between the paper web and the printhead, is moved with the paper web. The film web includes a coating, lying next to the paper, which is locally softened and transferred to the paper in response to an application of heat. Thus, this coating, which again is typically black, is removed according to the pattern in which the heating elements are driven, to be transferred to the adjacent paper surface, forming the printed image.
The main advantage of the direct process is its simplicity compared to the transfer process. The main advantage of the transfer process is that it produces a document on plain paper, having a better surface “feel” and being insensitive to heat. The main disadvantage of the transfer process is its cost, since the additional film ribbon web is more expensive than the coated paper. Also the web, which is rapidly used up, since it must move with the paper during printing, becomes another item to be stocked, replaced, and disposed during operation of the printer.
Because of its relative simplicity and low cost, the direct process is typically used for point-of-sale printers to print receipts and other documents rapidly and quietly, without the noise typically associated with impact printers in this application. At the point of sale, frequent replacement of supplies, such as film web, under the conditions of busy sales terminals and waiting lines, would be considered a serious disadvantage of the conventional transfer process. Additionally, the relatively small size of most receipts tends to eliminate objections to physical characteristics of the coated paper. Because documents received from facsimile transmissions are generally the size and shape of letter-size paper, because such documents are often filed with other documents of similar size and shape, and because of a longstanding level of general dissatisfaction with coated and tightly rolled paper for printing facsimile transmissions, the use of the transfer process with plain, letter-size paper is gaining wide acceptance in facsimile machines.
In the point-of-sale environment, what is needed is a method for using color to highlight specific information on a sales receipt, such as the total or amount due, so that such information can quickly be found in a list of numbers. Additionally, other information, such as advertising slogans or logos, printed on receipts may advantageously be highlighted using color. One method for providing such information highlighting involves returning to the conventional impact printer with a two color (typically red and black) ribbon. However, this method requires relinquishing the advantages of thermal printing in this environment, such as quiet operation, improved reliability with fewer moving parts, and a print quality that does not deteriorate over the life or a conventional ink ribbon.
In thermal printing, both the direct process and the transfer process can be modified to produce multicolor printed images. For example, U.S. Pat. No. 6,140,513 describes a recording material for use in the direct process of a two-color forming heat-sensitive system. The recording material has a single recording layer that forms at least two colors with a single kind of dye precursor experiencing changes in its chemical structure according to a level of heat energy applied to the recording layer.
A printer using the thermal transfer process to produce two or more colors is described in U.S. Pat. No. 4,672,393. The transfer film is formed as a ribbon having two or more layers, each of which has a different color and a different melting point, with the outermost layer, which is moved adjacent the recording paper on which printing is to occur, having the lowest melting point, and with the innermost layer, which lies against the film base of the ribbon, having the highest melting point. Thus, the number of layers transferred to the recording paper, and hence the color of the image formed by printing, is varied by changing the temperature of the heating elements within the printhead of the printer.
The principle disadvantage of each of these methods lies in the cost of its associated materials when compared to the single-color direct printing process. A direct printing thermal paper producing two colors is known to be substantially more expensive than conventional, single-color direct thermal printing papers. Even the single-color transfer process is known to require more expensive materials than the single-color direct printing process, and to require the disruption of frequent replacement of the thermal printing film cartridge. Therefore, in the point-of-sale environment, what is needed is a thermal printer capable of providing color highlighting, with the vast majority of the material being printed in black, without providing a substantial penalty in terms of materials cost or in terms of a frequent need to replace materials, due to the relatively infrequent use of a highlighting color.
The patent literature also includes descriptions of several thermal printing processes which print the subtractive primary colors, yellow, cyan, and magenta, in a manner causing their combination to represent any color. Such methods are too complex, expensive, and slow to be competitive for printing receipts in the point-of-sale environment. For example, U.S. Pat. No. 5,247,313 describes a direct thermal process in which the three layers are printed sequentially, with each layer being fixed to prevent further printing of its color after it is printed. U.S. Pat. Nos. 4,250,511 and 5,266,272 describe transfer thermal processes in which using a transfer film coated with transversely extending strips of different colors. In the process of U.S. Pat. No. 4,250,511, the transfer film is moved at a rate fast enough to allow each of the colors to be printed in a line of pixels before the paper moves off the line of pixels. In the process of U.S. Pat. No. 5,266,272, the paper is moved back and forth to print the different color layers sequentially from the different color layers of the transfer film.
SUMMARY OF THE INVENTION
According to a first aspect of the invention, apparatus is provided for direct thermal printing on a paper web having a first thermally sensitive coating turning from a light condition to a darkened condition at temperatures above a first temperature, with the apparatus additionally providing for transfer thermal printing on the paper web. The apparatus includes a thermal printhead, a paper drive motor, a transfer film web, a film drive motor, and a number of heating elements extending within the thermal printhead. The paper drive motor moves the paper web in a first direction past the thermal printhead and in proximity with the printhead, with the first thermally sensitive coating facing the thermal printhead. The transfer film web extends betwe

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus and method for printing two colors in a single... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus and method for printing two colors in a single..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus and method for printing two colors in a single... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3225133

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.