Apparatus and method for performing non-destructive...

Measuring and testing – Vibration – By mechanical waves

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06220099

ABSTRACT:

FIELD OF THE INVENTION
This invention relates generally to machines for performing non-destructive inspections of large area aircraft structures. More particularly, this invention relates to an aircraft scanner having tracks secured to a surface of a large object, such as an aircraft. Still more particularly, this invention relates to a method and apparatus for manipulating a test probe in a rectilinear scan pattern with a master X-axis, a slave X-axis, and a Y-axis.
BACKGROUND OF THE INVENTION
Multi-axis robotic manipulators, also know as mechanical scanners, are used for performing non-destructive inspections (NDI) of materials in many industries. The designs of such machines vary widely and include X-Y gantry systems, X-Y manipulators, R-THETA manipulators, and Z-THETA manipulators. While the specific designs of such machines vary widely, their theories of operation are similar. Mechanical scanners are used to manipulate a NDI probe in a pre-programmed scan pattern on an inspection surface. An analog signal from the NDI probe is monitored, digitized, and displayed by a data acquisition and analysis system. Position information provided by feedback devices on the scanner is used by the data acquisition and analysis system to develop a two- or three-axis mapping of the NDI information. Typical NDI methods used with this type of machine include ultrasonic testing, eddy current testing, and mechanical impedance testing.
Non-destructive inspections of military and civilian aircraft are currently being performed at various maintenance facilities throughout the United States. Ultrasonic methods and mechanical impedance methods are commonly used to detect disbonds between the outer skin and the honeycomb core in composite aircraft structures such as wings. Such disbonds may be caused by repeated stress reversals or water entrapment within the structures. Eddy current methods are currently being used to detect surface cracking in thin skin aircraft structures such as fuselages. Cracks in the skin commonly develop around fasteners and are caused by repeated stress reversals within the structures.
Most of the NDI of modern aircraft is being performed using manual techniques. These techniques require that a technician manipulate a hand-held probe on the aircraft surface while simultaneously monitoring a NDI instrument. Thus, the quality of manual NDI techniques are highly operator dependent. Moreover, such manual NDI techniques are labor intensive and slow. Still further, NDI data obtained during manual inspections cannot, in general, be saved as a permanent record.
NDI of modern aircraft is currently being performed using a limited amount of automated NDI techniques. Growth in the use of automated NDI methods has been limited due to the complex nature of modern aircraft structures. Typical aircraft surface geometries may be flat, conical, cylindrical, or some combination of the three representative typical surface geometries. The surface curvatures may be convex or concave, while the surface orientations may be horizontal, vertical, or overhead.
Most on-aircraft automated NDI techniques require the use of a mechanical scanner to manipulate a NDI probe, whether ultrasonic, eddy current, or mechanical impedance, in a preprogrammed scan pattern on the aircraft surface. Various aircraft scanner designs exist. These designs include rigid X-Y gantry systems which are supported by floor-mounted bases or which are mounted to the aircraft surface by vacuum cups. Another common design involves the use of a track-mounted, two-axis scanner. In this type of system, a vacuum track is coupled to the surface of the aircraft structure. A two-axis scanner mounts to the vacuum track via guide rollers or magnetic wheels. The X-axis typically coincides with the track axis. A cantilevered Y-axis is oriented 90 degrees relative to the X-axis.
Conventional mechanical scanner designs have seen limited use in aircraft NDI applications because they are not well-suited to the demands of the task. Conventional gantry systems are well-suited for inspecting large areas with flat surfaces but they cannot be adapted conveniently for small diameter curved surfaces or areas with limited access. Conventional vacuum track-mounted scanners can adapt to both flat and curved surfaces, but they can only cover a narrow area due to the cantilevered Y-axis.
Accordingly, a need has been recognized for a mechanical scanner which can be used to perform non-destructive inspections of large area aircraft structures, which can conform to the complex surface curvatures present on modern aircraft, and which is lightweight, less expensive, and has improved speed capabilities and enhanced flexibility in relation to existing designs.
SUMMARY OF THE INVENTION
Directed to achieving the foregoing and additional objectives and overcoming shortcomings of the prior art systems, a main object of the invention is to provide a scanner which efficiently performs non-destructive inspections of large area aircraft structures.
Another object of the invention is to provide a scanner according to the invention which interfaces to ultrasonic, eddy current, and mechanical impedance NDI probes.
Another object of the invention is to provide a scanner which manipulates a NDI probe in a rectilinear scan pattern when operated under control of a motion control system.
Still another object of the invention is to provide a scanner which conforms to complex surface geometries present on modern aircraft, these surface geometries include flat surfaces, convex curved surfaces, concave curved surfaces, cylindrical surfaces, conical surfaces, and parabolic surfaces.
Another object of the invention is to provide a scanner which operates on horizontal, overhead, and inverted aircraft structures.
A yet further object of the invention is to provide a scanner which couples to aircraft surfaces via an array of vacuum cups.
Still another object of the invention is to provide a scanner which is lightweight, portable, and easily set up by a single operator.
Another object of the invention is to provide a scanner which uses a modular design to facilitate equipment set up on the aircraft.
Another object of the invention is to provide a scanner which combines the large area inspection capabilities of a two-axis gantry system with surface-following and contour-following capabilities of a two-axis track-mounted scanner.
The foregoing and other objects of the present invention are accomplished by providing a scanner with two flexible tracks. Each flexible track is fitted with a motor driven tractor assembly. A rigid beam track spans the two flexible tracks. The rigid beam track spans between the two flexible tracks, and is coupled to each tractor assembly by articulating joints. The articulating joints permit movement at the joints along at least three independent axes.
The rigid beam supports a third motorized tractor. This third tractor supports a compliant thruster assembly that deploys gimbaled mechanical impedance, ultrasonic or eddy current inspection probes. The gimbal positively loads the inspection probes, keeping them in contact with the inspection surface with near constant force.
The rigid beam track serves as the scanner's Y axis. The flexible vacuum tracks serve as the X axis. The Y axis stroke is limited to the length of the rigid beam. The X axis stroke can be made infinitely long by connecting multiple track sections in a chain.
The scanner also includes a data acquisition and analysis system that controls scanner functions and operations. The movement of the scanner is controlled by a scan control subsystem forming part of the data acquisition and analysis system. The scan control system includes both hardware and software for controlling the movement of the scanner over the surface to be inspected. The software includes a teach mode that permits an operator to preprogram the scan pattern for the surface to be inspected using a global coordinate system. The global coordinate system allows the operator to reference points on the surface and the data display usi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus and method for performing non-destructive... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus and method for performing non-destructive..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus and method for performing non-destructive... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2452675

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.