Apparatus and method for ossicular fixation of implantable...

Surgery – Surgically implanted vibratory hearing aid

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06705985

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to an apparatus and method for interfacing an implantable hearing aid system with a patient's auditory system, and more particularly, to a fixation apparatus and method which yields enhanced energy transfer between an implantable actuator and the ossicular chain of a patient.
BACKGROUND OF THE INVENTION
Fully-implantable and semi-implantable hearing aid systems typically employ some form of actuator to stimulate the ossicular chain and/or tympanic membrane in the middle ear of a patient. By way of primary example, implantable actuators may comprise an electromechanical transducer having a vibratory member positioned to mechanically stimulate the ossicular chain via axial vibrations communicated therebetween (see e.g. U.S. Pat. No. 5,702,342).
As may be appreciated, the utilization of an implantable hearing aid actuator of the above-noted nature entails surgical positioning of the actuator within the mastoid process of a patient's skull. Such positioning typically requires the insertion of the actuator through a hole drilled in the mastoid process. Then, a distal end of an interconnected vibratory member is located immediately adjacent to a desired location along the ossicular chain (e.g. the incus).
In conjunction with such placement, the present inventors have recognized the importance of achieving a high degree of mechanical coupling between the vibratory member of an actuator and the ossicular chain in order to optimize performance. More particularly, the inventors have recognized that mechanical coupling may be significantly enhanced by inducing tissue interconnection with a vibratory member after implantation and/or by providing a degree of lateral loading between the vibratory member and ossicular chain. In turn, energy transfer is improved, thereby enhancing a patient's assisted hearing.
SUMMARY OF THE INVENTION
In view of the foregoing, a general objective of the present invention is to provide a hearing aid apparatus and method that improves mechanical coupling between the vibratory member of an implantable actuator and the ossicular chain of a patient.
A related objective of the present invention is to provide for improved ossicular coupling by enhancing tissue interconnection between an implantable vibratory member and the ossicular chain of a patient.
Another related objective of the present invention is to provide for improved ossicular coupling by achieving a degree of lateral loading between an implantable vibratory member and the ossicular chain of a patient.
Yet a further related objective of the present invention is to provide for improved ossicular coupling in a manner that is relatively easy and inexpensive to implement.
One or more of the above objectives and additional advantages may be realized by an inventive fixation apparatus that comprises a proximal end for interconnection to a vibratory member of an implantable hearing aid actuator and a distal end for issue interconnection with, and preferably direct physical contact with some member of the ossicular chain of a patient (e.g. the incus). The fixation apparatus further includes a body portion extending between the proximal end and the distal end.
In one aspect of the invention, the body portion of the fixation apparatus may comprise at least one surface discontinuity for inducing patient tissue attachment thereto after implantation of the fixation apparatus. Such discontinuity may be defined by surface pores and/or surface asperities and/or by one or more complex surfaces such as grooves, depressions, holes, slots, recesses or the like at the distal end or along the body portion of the fixation apparatus.
In one arrangement, the fixation apparatus may be fabricated utilizing a biocompatible material that yields surface pores and/or asperities, such pores or asperities being of a size sufficient to permit tissue infiltration after implantation. For such purposes, and by way of example only, the fixation apparatus may comprise a ceramic material (e.g. aluminumoxide), a plastic material (e.g. polytetrafluroethylene (PTFE), polyethylene or polydimethylsiloxane), or a composite material (e.g. PTFE—carbon fiber, PTFE—aluminumoxide, or aluminum oxide—zirconium). Such materials may be integrally molded into or otherwise coated over a core body to define the fixation apparatus. In the later regard, examples of preferable outer coating materials include hydroxyapatite, hydroxyapatile in an elastomeric matrix, or tricalciumphosphate with fibrigen glue.
As noted above, complex surface shapes may also advantageously define one or more surface discontinuities. In one arrangement, at least one slot may be provided which extends across the distal end and rearwardly through part of the body portion of the fixation apparatus. In a related arrangement, two transverse slots may be provided which extend from the distal end rearwardly through a part of the body portion. In an additional embodiment, a recessed ring may be defined around the body portion.
In yet a further arrangement, the body portion of the fixation apparatus may comprise one or more pairs of adjacent enlarged and reduced sections, wherein corresponding lip portions are defined therebetween. By way of example, the body portion may comprise a first frusto-conical section which proximally adjoins an adjacent reduced section (e.g., a cylindrical section), thereby defining an annular, stepped-down lip therebetween. In another arrangement, two frusto-conical sections may defined within the body portion with a reduced body section proximally located adjacent to each of the frusto-conical sections to define two corresponding lips. As may be appreciated, the utilization of configurations which define stepped-down lips from a distal end to proximal end perspective serves to enhance long term coupling since tissue growth which occurs after implantation adjacent to the lip portions will restrict undesired retraction (e.g., rearward movement) of the fixation apparatus.
In a related aspect of the present invention, the body portion of the fixation apparatus may comprise one or more tapered surfaces which angle outwardly from the distal end. Such a configuration facilitates insertion of the distal end into an opening defined at a desired location along the ossicular chain of a patient, thereby yielding an arrangement in which the distal end of the fixation apparatus may actually be seated within the ossicular opening to enhance mechanical coupling therebetween. Further, the noted arrangement facilitates removal, or disengagement, of the fixation device from the ossicular chain if so desired. Additionally, in certain arrangements a degree of outward, or lateral, loading on the sidewalls of the ossicular opening may be realized.
In yet another aspect of the present invention at least a subportion of the body portion of the fixation apparatus may be oriented so that a center axis thereof is not coaxially aligned with a center axis of an opening defined at a desired interface location along the ossicular chain of a patient. Further, at least the subportion of the body portion may comprise a material that resiliently accommodates a degree of deflection so that, upon insertion of the distal end of the fixation apparatus into the ossicular opening, the body portion contacts a sidewall of the ossicular opening and is deflected to apply an outward, or lateral, loading on the sidewalls of the ossicular opening. In this regard, it is preferable that the body portion be provided so that, during insertion of the distal end into an ossicular opening, a ratio of the axial force to radial force applied at the ossicular opening site is maintained at less than about 10 to 1; preferably with no more than about 1.2 grams of axial force being applied. In the latter regard, after inserted placement of the distal end, substantially no axial force should be applied at the ossicular opening, while application of the lateral loading force should continue, thereby yielding enhanced coupling. To achieve the desired functionality

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus and method for ossicular fixation of implantable... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus and method for ossicular fixation of implantable..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus and method for ossicular fixation of implantable... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3248500

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.