Apparatus and method for objective measurement of optical...

Optics: eye examining – vision testing and correcting – Eye examining or testing instrument – Objective type

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06497483

ABSTRACT:

FIELD OF THE INVENTION
The invention relates generally to optical aberration measurement and analysis, and more particularly to an objective measurement of optical systems, such as systems of a human eye.
BACKGROUND OF THE INVENTION
Optical systems having a real image focus can receive collimated light and focus it at a point. Such optical systems can be found in nature, e.g., human and animal eyes, or can be man-made, e.g., laboratory systems, guidance systems, and the like. In either case, aberrations in the optical system can affect the system's performance. By way of example, the human eye will be used to explain this problem.
A perfect or ideal eye diffusely reflects an impinging light beam from its retina through optics of the eye which includes a lens and a cornea. For such an ideal eye in a relaxed state, i.e., not accommodating to provide near-field focus, reflected light exits the eye as a sequence of plane waves. However, an eye typically has aberrations that cause deformation or distortion of reflected light waves exiting the eye. An aberrated eye diffusely reflects an impinging light beam from its retina through its lens and cornea as a sequence of distorted wavefronts.
There are a number of technologies that attempt to provide the patient with improved visual acuity. Typically, treatment is determined by placing spherical and/or cylindrical lenses of known refractive power at the spectacle plane (approximately 1.0-1.5 centimeters anterior to cornea) and literally asking the patient which lens or lens combination provides the clearest vision. This is an imprecise measurement of true distortions in the reflected wavefront because 1) a single spherocylindrical compensation is applied across the entire wavefront, 2) vision is tested at discrete intervals (i.e., diopter units) of refractive values, and 3) subjective determination by the patient is employed. Thus, conventional methodology for determining refractive errors in the eye is substantially less accurate than the techniques now available for measuring the ocular aberrations.
One method of measuring ocular refractive errors is disclosed in U.S. Pat. No. 5,258,791 to Penney et al. for “Spatially Resolved Objective Autorefractometer,” which teaches the use of an autorefractometer to measure the refraction of the eye at numerous discrete locations across the corneal surface. The autorefractometer is designed to deliver a narrow beam of optical radiation to the surface of the eye, and to determine where that beam strikes the retina using a retinal imaging system. Both the angle of the beam's propagation direction with respect to the optical axis of the system and the approximate location at which the beam strikes the corneal surface of the eye are independently adjustable. However, a small uncertainty or error in the location of the beam's point of incidence on the cornea exists due to the curved corneal surface. For each point of incidence across the corneal surface, the refraction of the eye corresponding to that surface point can be determined by adjusting the angle at which the beam strikes the cornea until the beam refracted on to the iris strikes the fovea centralis. Adjustment of the beam angle of propagation can be accomplished either manually by the patient or automatically by the autorefractometer, if a feedback loop involving a retinal imaging component is incorporated.
Penney '791 further teaches the use of the autorefractometer measurements in determining the appropriate corneal surface reshaping to provide emmetropia, a condition of a normal eye when parallel beams or rays of light are focused exactly on the retina and vision is perfect. This is accomplished by first obtaining an accurate measurement of corneal surface topography using a separate commercially available device. A mathematical analysis is then performed using an initial corneal topography at each surface reference point, the measured refraction at each surface point, and Snell's law of refraction, to determine a desired change in surface contour at each reference point.
A major limitation to the approach described by Penney '791 is that a separate measurement of corneal topography is desired to perform the Snell's Law analysis of needed refraction change. This adds significantly to the time and cost of a complete and desirable diagnostic evaluation. Further, the accuracy of the refraction change analysis will be dependent upon the accuracy of the topographic measurement and the accuracy of the autorefractometer measurement. In addition, any error in the spatial orientation of a topography map with respect to a refraction map will degrade the accuracy of the measured profile. Yet another limitation to known approaches such as described in Penney '791, by way of example, is that test points on the corneal surface are examined sequentially. Eye motion during the examination, either voluntary or involuntary, could introduce substantial errors in the refraction measurement. Penney '791 teaches detection of such eye movement by deliberately including measurement points outside the pupil, i.e., in the corneal region overlying the iris, where the return from the retina will obviously be zero at specific intervals in the examination sequence. However, this approach may still allow substantial undetected eye movement error between such iris reference points.
By way of example, one method and system known in the art, are disclosed by Junzhong Liang et al. in “Objective Measurement Of Wave Aberrations Of The Human Eye With The Use Of A Hartmann-Shack Wave-Front Sensor,” published in the Journal of the Optical Society of America, Volume 11, No. 7, July 1994, pages 1949-1957. Liang et al. teach the use of a Hartmann-Shack wavefront sensor to measure ocular aberrations by measuring the wavefront emerging from the eye by the retinal reflection of a focused laser light spot on the retina's fovea. The actual wavefront is reconstructed using wavefront-estimation with Zernike polynomials.
The imprecise measurement technique of placing lenses of known refractive power anterior to the cornea and asking a patient which lens or lens combination provides the clearest vision has been improved with the use of autorefractometers, as described in Penny '79, or with the use of wavefront sensors as described by Liang et al. Spatially resolved refraction data, in combination with measured existing surface contour of the anterior surface of the eye, enable a calculation of a detailed spatially resolved new contour. However, it would be an improvement in this art if such vision measurements could be made without the need for this contour data, and further without the need for feedback from the patient regarding an appropriate lens. Liang et al. discloses the use of a Hartmann-Shack wavefront sensor to measure ocular aberrations by measuring the wavefront emerging from the eye by retinal reflection of a focused laser light spot on the retina's fovea. A parallel beam of laser light passes through beam splitters and a lens pair which brings the beam to a focus point on the retina by the optics of the eye. Possible myopia or hyperopia of the tested eye is determined by movement of a lens within the lens pair. The focused light on the fovea is then assumed to be diffusely reflected and acts as a point source located on the retina. The reflected light passes through the eye and forms a distorted wavefront in front of the eye that results from the ocular aberrations. The aberrated wavefront is then directed to the wavefront sensor.
A point source of radiation on the retina would be ideal for such measurements. However, when the perfect eye receives a collimated beam of light, the best possible image on the retina is a diffraction limited spot. As illustrated by way of example, with Penny et al. and Liang et al., discussed above, and typical for those of skill in the art, parallel or collimated beams are used with the optics of the eye being measured to achieve this diffraction limited spot for such objective measurem

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus and method for objective measurement of optical... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus and method for objective measurement of optical..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus and method for objective measurement of optical... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2995381

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.