Apparatus and method for non-invasively monitoring a...

Surgery – Diagnostic testing – Cardiovascular

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C600S500000, C600S503000

Reexamination Certificate

active

06176831

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates generally to apparatus and methods for monitoring a subject's arterial blood pressure and, more particularly, to such apparatus and methods that monitor arterial blood pressure non-invasively by applying a pressure sensor against tissue overlying an arterial blood vessel, to partially applanate or compress the vessel.
Two well-known techniques have been used to non-invasively monitor a subject's arterial blood pressure waveform, namely, auscultation and oscillometry. Both techniques use a standard inflatable arm cuff that occludes the subject's brachial artery. The auscultatory technique determines the subject's systolic and diastolic pressures by monitoring certain Korotkoff sounds that occur as the cuff is slowly deflated. The oscillometric technique, on the other hand, determines these pressures, as well as the subject's mean pressure, by measuring actual pressure changes that occur in the cuff as the cuff is deflated. Both techniques determine pressure values only intermittently, because of the need to alternately inflate and deflate the cuff, and they cannot replicate the subject's actual blood pressure waveform. Thus, true continuous, beat-to-beat blood pressure monitoring cannot be achieved using these techniques.
Occlusive cuff instruments of the kind described briefly above generally have been effective in sensing long-term trends in a subject's blood pressure. However, such instruments generally have been ineffective in sensing short-term blood pressure variations, which are of critical importance in many medical applications, including surgery.
One technique that has been used to provide information about short-term blood pressure variations is called arterial tonometry. One device for implementing this technique includes a rigid array of miniature pressure transducers that is applied against the tissue overlying a peripheral artery, e.g., the radial artery. The transducers each directly sense the mechanical forces in the underlying subject tissue, and each is sized to cover only a fraction of the underlying artery. The array is urged against the tissue, to applanate the underlying artery and thereby cause beat-to-beat pressure variations within the artery to be coupled through the tissue to the transducers.
The rigid arterial tonometer described briefly above is subject to several drawbacks. First, its discrete transducers are relatively expensive and, because they are exposed, they are easily damaged. In addition, the array of discrete transducers generally is not anatomically compatible with the continuous contours of the subject's tissue overlying the artery being sensed. This has led to inaccuracies in the resulting transducer signals. In addition, in some cases, this incompatibility can cause tissue injury and patient discomfort. Another drawback is that such rigid arterial tonometers have failed to correct for signal artifacts that arise when the subject's arm is moved. This is a particular problem when the subject is exercising or otherwise ambulating.
Yet another drawback to the arterial tonometer described briefly above is its inability to continuously monitor and adjust the level of arterial wall compression to an optimum level of zero transmural pressure. Generally, optimization of arterial wall compression has been achieved only by periodic recalibration. This has required an interruption of the patient monitoring function, which sometimes can occur during critical periods. This drawback is perhaps the most severe factor limiting acceptance of tonometers in the clinical environment.
Another device functioning similarly to the arterial tonometer includes a housing having a closed, liquid-filled chamber with one wall of the chamber defined by a flexible diaphragm. The device is applied against a subject's skin, with the flexible diaphragm pressed against the tissue overlying a peripheral artery, e.g., the radial artery, and several electrodes located in separate compartments of the chamber sense volume changes in the compartments that result from the beat-to-beat pressure variations in the underlying artery. Although the device seeks to replicate the arterial pressure waveform, it is considered to have a relatively low gain, making it unduly susceptible to noise. Further, the device must be calibrated periodically, during which time its continuous monitoring of the subject's blood pressure waveform necessarily is interrupted.
It should, therefore, be appreciated that there is a continuing need for an apparatus, and related method, for non-invasively and continuously monitoring a subject's blood pressure, with reduced susceptibility to noise and without the need to intermittently interrupt the device's normal operation for calibration. Various embodiments of the present invention can fulfill some or all of these requirements.
SUMMARY OF THE INVENTION
The present invention resides in an improved apparatus, and related method, for non-invasively monitoring a subject's arterial blood pressure, with reduced susceptibility to noise and without the need to intermittently interrupt the pressure monitoring for calibration. The apparatus includes a pressure transducer that produces a pressure signal indicative of the pressure applied against it and further includes a coupling device that urges the pressure transducer into compressive association and engagement with tissue overlying the subject's blood vessel, to compress the vessel and ensure that pressure variations within the vessel are coupled through the tissue to the pressure transducer.
A controller controls the coupling device to controllably modulate the location of the pressure transducer relative to a nominal location that is static with respect to the subject's blood vessel. The controller also monitors the resulting effect of the modulation on the pressure signal, producing an error signal (i.e., a control signal) that is indicative of the deviation of the nominal location from a preferred target location. Preferably, the coupling device is configured to respond to the error signal by controllably adjusting the nominal location toward the target location. When the nominal location is at or substantially close to the target location, the blood vessel is compressed according to a prescribed requirement, which is preferably a prescribed mean amount providing a transmural pressure of substantially zero. This requirement optimizes the coupling between the blood vessel and the sensor assembly. The pressure sensor assembly thereby senses the subject's blood pressure in an optimal manner.
More particularly, in one form of the invention, the pressure sensor assembly includes a base configured to provide reaction forces for urging the pressure transducer into compressive association with the tissue overlying the subject's blood vessel. The coupling device includes a first variable positioning device, such as a first motor with an eccentric cam, configured to controllably adjust the nominal location toward the target location. The coupling device also includes a second variable positioning device, such as a second motor with an eccentric cam, configured to vary the pressure transducer through a range of locations relative to the nominal location, i.e., modulating the pressure transducer about the nominal location.
Preferably, the first and second variable positioning devices actuate a first and second end of a lever arm, respectively, to actuate the pressure transducer, which is connected to the lever arm between the two ends. By monitoring the effect on the pressure signal of the second variable positioning device, the controller can direct the first variable positioning device to adjust the lever arm such that the nominal location moves, and thus the subject's blood vessel becomes compressed by the prescribed mean amount.
In a separate aspect of the invention, the pressure transducer is in compressive association with the tissue and blood vessel through a substantiall

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus and method for non-invasively monitoring a... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus and method for non-invasively monitoring a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus and method for non-invasively monitoring a... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2478616

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.