Apparatus and method for monitoring and controlling...

Data processing: measuring – calibrating – or testing – Measurement system in a specific environment – Chemical analysis

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C707S793000

Reexamination Certificate

active

06594588

ABSTRACT:

This application is a 35 U.S.C. §371 filing of International Patent Application No. PCT/GB99/01569, filed May 17, 1999. This application claims priority benefit of Great Britain Patent Application No. 9810574.5, filed May 18, 1998.
FIELD OF THE INVENTION
This invention relates to the field of monitoring and controlling laboratory information and/or laboratory instruments.
BACKGROUND TO THE INVENTION
The word laboratory may be taken to encompass many different types of establishment, from a single room containing one or two scientific instruments to a building housing hundreds of scientists and pieces of equipment; from a place of academic research to the process control room of a brewery, food manufacturing plant, oil refinery, chemical or pharmaceutical facility etc. What most laboratories have in common is their function of performing scientific tests or experiments and their product, laboratory information. In a modern laboratory, there may be hundreds of samples, in respect of each of which hundreds of items of data must be known such as the sample's origin, its amount, its likely constituents, the chain of custody of the sample, any tests it has undergone (and their results) etc. There will also be information regarding any tests that the sample should undergo in the future and instructions as to the carrying out of these tests, amongst many other types of information and instructions.
The task of handling and managing these data and instructions for even a small laboratory can be vast, and for this purpose different types of Laboratory Information Management System (LIMS) have been proposed. LIMS are software-based systems using databases to store, retrieve, manipulate and report laboratory data, to provide information about work being and to be undertaken and/or to control laboratory instruments. The LIMS may provide spreadsheet, word processor, statistical and quality control functions in addition to other functions which may be specific to certain types of laboratory for example a commercial research laboratory may require an automatic billing function. The LIMS may also directly control a number of scientific instruments. Since the needs of each laboratory are different, a typical LIMS package may not fulfil all a laboratory's requirements “out of the box”, but will require some customisation, either by the vendor or by the customer. Such customisation may require many weeks of expensive coding, with or without the aid of regulated business models, in order that the LIMS system can operate according to a particular laboratory's exact requirements. Should these requirements change at a future date, for example with the introduction of new statutory requirements, further expensive coding will be necessary. The amount of effort required to customise the base software can often be the major financial and time cost of a LIMS installation. The flow of events happening to a sample in a typical prior art LIMS is shown in FIG.
1
. Before running any samples, the system is configured by defining various static data tables and entering data therein. This information will typically be about the laboratory environment, the types of analyses which can be performed, the test schedules and the types of samples to be analyzed. In
FIG. 1
these steps are shown as boxes
1
,
2
,
3
and
4
respectively. Once this data is entered, samples may be run. A sample is logged in as shown in box
5
and a worksheet is generated (box
6
) giving a list of tests to be carried out on the sample. This worksheet may for example be printed out on paper as a series of instructions for a human operator, as a bar code to be read by a bar code reader or automatically sent to an instrument or series of instruments for automatic handling of a sample. The results of these tests are then entered into the system (again either manually or automatically)—this is shown as box
7
. The results may then be outputted in report form (box
8
), and/or checked against nominal values to check the quality of the product from which the sample was drawn (box
9
). Once the results have been authorised (box
10
) the data can be archived.
In a typical LIMS the sequence of work is broadly fixed, although each individual step may be modified by the user. Changing the sequence of events, or adding further logical branches (e.g. IF . . . THEN . . . ELSE nodes) to the sequence usually requires the development of custom code, generally in the programming language of the LIMS, which may be a proprietary language unique to that LIMS. Such customisation is not only complex and expensive but it can lead to problems for the customer in terms of upgrading and validating their LIMS. For example, the business process of a particular laboratory may require that each time a sample arrives from a particular client, a receipt should be generated and sent to that client. In a traditional LIMS, the services of an experienced analyst would be required to design and code a custom mechanism for this scenario.
SUMMARY OF THE INVENTION
The object of the present invention is to provide a LIMS which obviates the need for such customisation. In particular, the object of the present invention is to provide a LIMS which allows the user readily to generate and modify the sequence of event to be undergone by a sample or samples. Another object of the present invention is to provide a LIMS which is easy to use and modify. A further object of the invention is to provide means for monitoring and/or controlling laboratory information and/or instrumentation which is easily configured and used by the user. These and other objects are realized by the invention as described below.
According to a first aspect of the present invention, there is provided a laboratory control system, which has an electronic storage device for storing static and dynamic laboratory data. The system also has a system data input/output which sends instructions to the laboratory and receives dynamic laboratory data back. A GUI and a user input allow a sequence of tasks to be defined which a processor executes in turn, using the static and the dynamic data, the latter of which is obtained from the laboratory.
There are a number of advantages to the system of the invention over the prior art. Firstly, the use of graphical symbols or ‘objects’ allows straightforward set up of a complex sequence of tasks (hereafter referred to as a ‘workflow’) without the need for a skilled programmer. Secondly, the overall amount of code that needs to be written is dramatically reduced with the present invention. Each symbol or ‘object’ requires a finite amount of code to be written to allow the task function to be fully specified, as well as to allow connection or linkage to other tasks.
For example, to define a suitable number of different sequences or workflows to address most eventualities in a laboratory information management system may require several tens of different symbols in the array of symbols, requiring several tens of thousands of lines of codes. However, to write separate bespoke programs to address the many different test procedures in a large laboratory (as frequently occurred in the prior art) may require several million lines of code.
The term ‘static laboratory data’ will be understood by those skilled in the art to refer to the body of information held by the laboratory, in a database for example, and which relates to procedures which tend not to change with time. By way of example only, static laboratory data may include the types of samples to be analysed and the types of analyses to be performed.
Likewise, the term ‘dynamic laboratory data’ will be understood by the skilled reader to refer to the body of information held by the laboratory, again in a database for example, and which usually relates to procedures specific to each particular experiment. For example, dynamic laboratory data may include the identification of a specific sample to be analysed, or the results of such analysis.
The invention also extends to a method of controlling data relating to, and o

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus and method for monitoring and controlling... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus and method for monitoring and controlling..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus and method for monitoring and controlling... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3085951

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.