Optics: measuring and testing – For light transmission or absorption
Reexamination Certificate
2005-10-25
2005-10-25
Rosenberger, Richard A. (Department: 2877)
Optics: measuring and testing
For light transmission or absorption
C356S445000, C356S237200
Reexamination Certificate
active
06958814
ABSTRACT:
An apparatus measures a property of a layer (such as the sheet resistance of a conductive layer) by performing the following method: (1) focusing the heating beam on the heated a region (also called “heated region”) of the conductive layer (2) modulating the power of the heating beam at a predetermined frequency that is selected to be sufficiently low to ensure that at any time the temperature of the optically absorbing layer is approximately equal to (e.g., within 90% of) a temperature of the optically absorbing layer when heated by an unmodulated beam, and (3) measuring the power of another beam that is (a) reflected by the heated region, and (b) modulated in phase with modulation of the heating beam. The measurement in act (3) can be used directly as a measure of the resistance (per unit area) of a conductive pad formed by patterning the conductive layer. Acts (1)-(3) can be repeated during fabrication of a semiconductor wafer, at each of a number of regions on a conductive layer, and any change in measurement indicates a corresponding change in resistance of the layer. When the measurement changes by more than a predetermined amount (e.g., by 10%), a process parameter that controls the fabrication process is changed to return the measurement to normal in the next wafer.
REFERENCES:
patent: 3462602 (1969-08-01), Apple
patent: 3803413 (1974-04-01), Vanzetti et al.
patent: 3909602 (1975-09-01), Micka
patent: 3930730 (1976-01-01), Laurens et al.
patent: 4201087 (1980-05-01), Akita et al.
patent: 4243327 (1981-01-01), Frosch et al.
patent: 4255971 (1981-03-01), Rosencwaig
patent: 4455741 (1984-06-01), Kolodner
patent: 4466748 (1984-08-01), Needham
patent: 4468136 (1984-08-01), Murphy et al.
patent: 4513384 (1985-04-01), Rosencwaig
patent: 4521118 (1985-06-01), Rosencwaig
patent: 4522510 (1985-06-01), Rosencwaig
patent: 4579463 (1986-04-01), Rosencwaig et al.
patent: 4632561 (1986-12-01), Rosencwaig et al.
patent: 4634290 (1987-01-01), Rosencwaig
patent: 4636088 (1987-01-01), Rosencwaig et al.
patent: 4679946 (1987-07-01), Rosencwaig et al.
patent: 4710030 (1987-12-01), Tauc et al.
patent: 4750822 (1988-06-01), Rosencwaig et al.
patent: 4795260 (1989-01-01), Schuur et al.
patent: 4950990 (1990-08-01), Moulder
patent: 4975141 (1990-12-01), Greco et al.
patent: 4996659 (1991-02-01), Yamaguchi et al.
patent: 5042951 (1991-08-01), Gold et al.
patent: 5074669 (1991-12-01), Opsal
patent: 5128864 (1992-07-01), Waggener et al.
patent: 5149978 (1992-09-01), Opsal et al.
patent: 5159412 (1992-10-01), Willenborg et al.
patent: 5181080 (1993-01-01), Fanton et al.
patent: 5228776 (1993-07-01), Smith et al.
patent: 5304931 (1994-04-01), Flamig et al.
patent: 5377006 (1994-12-01), Nakata
patent: 5408327 (1995-04-01), Geiler et al.
patent: 5430548 (1995-07-01), Hirio et al.
patent: 5454004 (1995-09-01), Leger
patent: 5574562 (1996-11-01), Fishman et al.
patent: 5652716 (1997-07-01), Battersby
patent: 5657754 (1997-08-01), Rosencwaig
patent: 5667300 (1997-09-01), Mandelis et al.
patent: 5706094 (1998-01-01), Maris
patent: 5741614 (1998-04-01), McCoy et al.
patent: 5761082 (1998-06-01), Miura-Mattausch
patent: 5764363 (1998-06-01), Ooki et al.
patent: 5790251 (1998-08-01), Hagiwara
patent: 5877860 (1999-03-01), Borden
patent: 5883518 (1999-03-01), Borden
patent: 5966019 (1999-10-01), Borden
patent: 5978074 (1999-11-01), Opsal et al.
patent: 6049220 (2000-04-01), Borden et al.
patent: 6054868 (2000-04-01), Borden et al.
patent: 6081334 (2000-06-01), Grimbergen et al.
patent: 6154280 (2000-11-01), Borden
patent: 6169601 (2001-01-01), Eremin et al.
patent: 6178020 (2001-01-01), Schultz et al.
patent: 6281027 (2001-08-01), Wei et al.
patent: 6323951 (2001-11-01), Borden et al.
patent: 6327035 (2001-12-01), Li et al.
patent: 6330361 (2001-12-01), Mitchell et al.
patent: 6336969 (2002-01-01), Yamaguchi et al.
patent: 6395563 (2002-05-01), Eriguchi
patent: 6400454 (2002-06-01), Noguchi et al.
patent: 6426644 (2002-07-01), Borden et al.
patent: 6483594 (2002-11-01), Borden et al.
patent: 6486965 (2002-11-01), Kim
patent: 6489624 (2002-12-01), Ushio et al.
patent: 6489801 (2002-12-01), Borden et al.
patent: 6528333 (2003-03-01), Jun et al.
patent: 6559942 (2003-05-01), Sui et al.
patent: 6694284 (2004-02-01), Nikoonahad et al.
patent: 6734968 (2004-05-01), Wang et al.
patent: 2002/0126732 (2002-09-01), Shakouri et al.
patent: 2002/0186045 (2002-12-01), Cox
patent: 2003/0036231 (2003-02-01), Bhattacharva et al.
patent: 2003/0096436 (2003-05-01), Satya et al.
patent: 2003/0155927 (2003-08-01), Pinto et al.
patent: 0 718 595 (1995-12-01), None
patent: 05006929 (1993-01-01), None
patent: 2000009443 (2000-01-01), None
patent: 97/08536 (1997-06-01), None
patent: 99/64880 (1999-12-01), None
patent: 00/07357 (2000-03-01), None
J. Opsal, “High Resolution Thermal Wave Measurements and Imaging of Defects and Damage in Electronic Materials” Photoacoustic and Photothermal Phenomena II, Springer Series in Optical Sciences, vol. 62, Springer Verlag Berlin, Heidelberg, 1990.
A. Rosencwaig, “Thermal Wave Measurement of Thin-Film Thickness”; 1986 American Chemical Society, pp. 182-191.
A. Rosencwaig et al., “Thin-Film Thickness Measurements with Thermal Waves”; Journal De Physique, Oct. 1983, pp. C6-483—C6-489.
W. L. Smith et al. “Thermal-wave Measurements and Monitoring of TaSIx Silicide Film Properties” J. Vac. Technol.B2(4), Oct.-Dec. 1984, pp. 710-713.
A. Salnick et al., “Nonlinear Fundamental Photothermal Response in 3D Geometry: Experimental Results for Tungsten”, (believed to be prior to Mar. 1, 2002).
S. Ameri et al., “Photo-Displament Imaging”, Mar. 30, 1981, pp. 337-338.
L. Chen et al., “Thermal Wave Studies of Thin Metal Films Using the Meta-Probe-A New Generation Photothermal System” 25th Review of Progress in QNDE, Snowbird, UT Jul. 19-24, 1998, pp 1-12.
P. Alpern and S. Wurm, “Modulated Optical Reflectance Measurements on Bulk Metals and Thin Metallic Layers”, J. Appl. Phys. 66(4), Aug. 15, 1989, pp 1676-1679.
J. Opsal, “The Application of Thermal Wave Technology to Thickness and Grain Size Monitoring of Aluminum Films”, SPIE vol. 1596 Metalization Performance and Reliability Issues for VLSI and ULSI (1991), pp 120-131.
A. Rosenwaig, “Process Control In IC Manufacturing With Thermal Waves”, Review of Progress in Quantitative Nondestructive Evaluation, vol. 9, 1990, pp 2031-2037.
K. Farnaam, “Measurement of Aluminum Alloy Grain Size on Product Wafers and its Correlation to Device Reliability”, 1990 WLR Final Report, pp 97-106.
B.C. Forget et al., “High Resolution AC Temperature Field Imaging”, Electronic Letters 25th Sep. 1997, vol. 33 No. 20, pp 1688-1689.
C. Paddock et al., “Transient Thermoreflectance from Metal Films”, May 1986 vol. 11, No. 5 Optical Letters, pp 273-275.
C. Paddock et al., “Transient Thermoreflectance from Metal Films”, J. Appl. Phys. 60(1), Jul. 1, 1986, pp 285-290.
Per-Eric Nordail et al. “Photothermal Radiometry”, Physica Scripts, vol. 20, 659-662, 1979.
A. Rosenwaig, “Thermal Wave Monitoring and Imaging of Electronic Materials and Devices”, pp 73-109.
A. Rosenwaig, “Applications of Thermal-Wave Physics to Microelectronics”, VLSI Electronics, Microstructure Science vol. 9, 1995, pp 227-288.
W. Lee Smith et al., “Voids, Notches and Microcracks in A1 Metallization Detected by Nondestructive Thermal Wave Imaging”, Jun. 23, 1989, pp. 211-221.
W. Lee Smith et al., Imaging of Subsurface Defects in ULSI Metalization (A1 Voids SI Preciptates, Silicide Instability) and SI Substrates (D Defects), Technical Proceedings Simicon/Japan 1992, Nippon Convention Center, Japan pp 238-246.
W. Lee Smith, “Nondestructive Thermal Wave Imaging of Voids & Microcracks in Aluminum Metallization”, 1989 WLR Final Report, pp 55-68.
W. Lee Smith, “Direct Measurement of Stress-Induced Void Growth by Thermal Wave Modulated
Borden Peter G.
Li Ji Ping
Rosenberger Richard A.
Silicon Valley Patent & Group LLP
LandOfFree
Apparatus and method for measuring a property of a layer in... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Apparatus and method for measuring a property of a layer in..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus and method for measuring a property of a layer in... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3471155