Adhesive bonding and miscellaneous chemical manufacture – Methods – Surface bonding and/or assembly therefor
Reexamination Certificate
1998-06-09
2001-04-17
Yao, Sam Chuan (Department: 1733)
Adhesive bonding and miscellaneous chemical manufacture
Methods
Surface bonding and/or assembly therefor
C156S156000, C156S203000, C156S218000, C156S292000, C156S308400, C156S466000
Reexamination Certificate
active
06217689
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus and method for manufacturing packing material and, more particularly, to an apparatus and method for manufacturing packing material that is compact in size and capable of producing packing material on demand and at a sufficient rate to satisfy multiple packing personnel needs on an immediate basis.
Packing material is needed in many different applications. In some installations where products are shipped on a daily basis, packing material is a critical element in a successful business operation. Often, large quantities of packing material must be kept on hand for such daily use, which encumbers valuable storage space.
It is therefore desirable to provide an apparatus and method for manufacturing packing material that is compact in size and capable of producing packing material on demand and at a sufficient rate to satisfy even large packing material needs. Devices and methods have been disclosed for on-site manufacturing of packing material. For example, U.S. Pat. No. 4,714,506 discloses a method for making a packing material from a web material. In the method, edges of the web material are heat-pressed to form a continuous cylindrical body. The cylindrical body is then heat-pressed at suitable intervals to obtain a plurality of substantially triangular-shaped hollow units connected in series. With this method, however, the intricate configuration required to form the triangular-shaped hollow units requires an increased number of moving parts and slows the manufacturing process.
A similar process is disclosed in U.S. Pat. No. 4,564,407. In this process, the web material is formed into a cylindrical shape and fusion bonded in the longitudinal direction by a longitudinal sealer. The cylindrical film is then fusion-bonded by a transverse sealer. The transverse sealer
16
consists of a pair of opposing stamping plates that converge on the cylindrical film to fusion-bond the cylindrical film into pockets. Similar to the device disclosed in the '506 patent, the transverse sealer according to the '407 patent requires the stamping plates to be constantly moved toward and away from each other to effect sealing, and the cylindrical film must be fed at a rate slow enough or even temporarily stopped to give the sealer
16
sufficient time to perform the fusion bond.
SUMMARY OF THE INVENTION
It is therefore an object of the present invention to provide a method and apparatus for manufacturing packing material from a web material that overcomes the disadvantages of the prior art. It is another object of the invention to provide an apparatus and method for manufacturing packing material that is compact in size and capable of producing packing material on demand and at a sufficient rate to satisfy packing needs on an immediate basis.
These and other objects of the invention are achieved by providing an apparatus for manufacturing packing material from a web material including a folding member folding the web material into a folded web such that longitudinal ends of the web material are oriented facing each other at one end of the folded web and a fold is oriented at another end of the folded web. The apparatus also includes a longitudinal sealing assembly disposed downstream of the folding member aligned with the one end of the folded web. The longitudinal sealing assembly seals the longitudinal ends of the web material forming a continuous tube of the web material. The apparatus additionally includes a lateral sealing assembly disposed downstream of the longitudinal sealing assembly. The lateral sealing assembly includes a pair of lateral sealing rollers disposed in rotating engagement with each other. The lateral sealing rollers have staged sealing surfaces staged between 45°-180° apart that effect the lateral sealing of the continuous tube of the web material.
At least one of the staged sealing surfaces may include either a heating element, a serrated edge, and/or a cutting edge. The longitudinal sealing assembly preferably includes first, second and third pairs of rollers in respective rolling engagement with each other. In operation, the first pair of rollers preferably pre-forms the folded web material for sealing by pulling the film taughtly over a forming guide or mandrel. The second pair of rollers preferably includes a heating element to effect longitudinal sealing of the longitudinal ends of the web material. Both the first pair of rollers and the second pair of rollers may include a grooved pattern that urges the web material downward.
The mandrel is preferably disposed between the folding member and the longitudinal sealing assembly. In one embodiment, the mandrel is hollow defining an air passage, wherein the apparatus further includes a source of pressurized air communicating with the air passage and an air outlet at an end of the air passage. The air outlet is disposed between the longitudinal sealing assembly and the lateral sealing assembly. A non-stick coating may be provided on the mandrel.
In accordance with another aspect of the invention, there is provided a method of manufacturing packing material from a web material. The method includes the steps of folding the web material into a folded web such that longitudinal ends of the web material are oriented facing each other at one end of the folded web and a fold is oriented at the other end of the folded web; sealing the longitudinal ends of the web material forming a continuous tube of the web material; and rotating the sealing rollers of the lateral sealing assembly to contact the staged sealing surfaces and thereby effect staged lateral sealing of the continuous tube of the web material. The step of sealing the longitudinal ends of the web material is preferably practiced by pre-forming the web material for sealing, heat sealing the longitudinal ends of the web material, and setting the seal. The setting is preferably practiced by providing a closing force to the seal, evening the seal, and cooling the seal.
In accordance with still another aspect of the invention, there is provided a lateral sealing assembly for effecting lateral sealing of a continuous tube of web material. The lateral assembly includes a pair of lateral sealing rollers disposed in rotating engagement with each other and having staged sealing surfaces effecting staged lateral sealing of the continuous tube. In this context, each of the lateral sealing rollers preferably includes an upper ring and a lower ring in rotating engagement with a corresponding upper ring and lower ring of the other lateral sealing roller; and at least one sealing panel disposed between the upper ring and the lower ring, which sealing panel defines the staged sealing surfaces.
REFERENCES:
patent: 2265075 (1941-12-01), Knuetter
patent: 2529732 (1950-11-01), Howard
patent: 3004881 (1961-10-01), Van Der Meulen
patent: 3900346 (1975-08-01), Koch et al.
patent: 4490204 (1984-12-01), Benfield
patent: 4564407 (1986-01-01), Tsuruta
patent: 4714506 (1987-12-01), Yamashiro et al.
patent: 5540644 (1996-07-01), Naraoka et al.
patent: 5552003 (1996-09-01), Hoover et al.
patent: 5660662 (1997-08-01), Testone
Nixon & Vanderhye P.C.
Norcen Industries
Yao Sam Chuan
LandOfFree
Apparatus and method for manufacturing packing material does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Apparatus and method for manufacturing packing material, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus and method for manufacturing packing material will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2522624