Apparatus and method for manufacturing composite articles...

Metal working – Method of mechanical manufacture – Jewelry or locket making

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C164S080000, C164S098000, C219S056220, C219S121140, C228S244000, C228S256000

Reexamination Certificate

active

06553667

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to an apparatus and method for manufacturing a composite article and to the article manufactured by that apparatus and method, and more particularly to an apparatus and method for manufacturing an article having a hard, wear-resistant component and a softer, more malleable component, such as articles made from “hard” metals and/or ceramic materials either alone or in combination with precious metals and jewels such that the hardened materials protect the softer precious metals and jewels from edge and detail wear down, including to jewelry items such as finger rings, bracelets, earrings, body jewelry, and the like, and medical or industrial devices or components.
BACKGROUND OF THE INVENTION
Jewelry has for centuries been made of soft materials such as gold, silver, platinum and other soft materials because such metals were malleable, and easily cast, forged, molded or otherwise formed. However, whereas such materials are relatively easy to form, shape and polish, they are equally subject to wear, scratching and other damage detracting from their longevity appearance and value, i.e., wearing down of edges to a smooth and rounded state.
More recently, science has produced other materials including tungsten, cemented carbide and high-tech ceramics that are much harder than the previously mentioned precious metals, and once formed, are virtually indestructible when used in a normal jewelry wearing environment. One problem with such materials is that because of their hardness, they are very difficult to shape, and once formed, require special machining and/or grinding tools to alter their configuration and appearance. Accordingly, with the exception of articulated watch bands or housings for certain timepieces, such materials have historically not been used for articles of jewelry of the types mentioned above. However, I have recently discovered that through the use of powder metallurgy and sintering processes, such materials can be manufactured and used to provide faceted designs that were not heretofore practiced. Furthermore, such materials can be used to enhance and protect precious metals and gemstones in this jewelry setting.
In the process of fabricating parts from powdered metals, the most important step is one involving the welding together of the metallic powder to form a solid which will yield the proper shape and the properties required of the finished part. Although a good weld cannot be made between metals at room temperature by pressure alone, when the metal particles are relatively fine and plastic, a welding may occur that is satisfactory from the view point of handling, although little or no strength will be developed. Under pressure, at room temperature, metal powders that are plastic and relatively free from oxide films, may be compacted to form a solid of the desired shape having a strength (green strength) that allows the part to be handled. This result is often called cold-welding. The welding under pressure of the metal particles in order form a solid blank of the shape desired, requires the use of pressures varying from 5 to 100 tons-per-square inch. Relatively light loads are used for the molding of the solder and more plastic metals, while pressures approaching 100 tons per square inch are necessary when maximum density is needed and when pressing relatively hard and fine metal powders such as those mentioned above are used in accordance with the present invention.
Commercial pressing is done in a variety of presses which may be of the single mechanical punch-press type or the double—action type of machine that allows pressing from two directions by moving upper and lower punches synchronized by means of cams. These machines also incorporate moveable core rods which make it possible to mold parts having long cores, assist in obtaining proper die fills and help in the ejection of the pressed parts.
The molding of small parts at great speeds and at relatively low pressures can be accomplished using the mechanical press. For example, mechanical presses can produce parts at the rate of 300 to 30,000 parts per hour. A satisfactory press should meet certain definite requirements among which are the following: (1) sufficient pressure should be available without excessive deflection of press members; (2) the press must have sufficient depth of fill to make a piece of required heights dependent upon the ratio of loose powder to the compressed volume, this being referred to as the compression ration; (3) a press should be designed with an upper or lower punch for each pressing level required in the finished part, although this may be taken care of by a die design with a shoulder or a spring mounted die which eliminates an extra punch in the press; and (4) a press should be designed to produce the number of parts required. The punches are usually made from an alloy of tungsten carbide or punched steel that can be hardened by oil quenching.
Heating of the cold-welded metal powder is called the “sintering” operation. The function of heat applied to the cold-welded powder is similar to the function of heat during a pressure-welding operation of steel in that it allows more freedom for the atoms and crystals; and it gives them an opportunity to re-crystalize and remedy the cold deformation or distortion within the cold pressed part. The heating of any cold-worked or deformed metal will result in re-crystallization and grain growth of the crystals or grains within the metal. This action is the same one that allows one to anneal any cold work-hardened metal and also allows one to pressure-weld metals. Therefore, a cold-welded powder will re-crystalize upon heating, and upon further heating, the new crystals will grow, thus the crystal grains become larger and fewer.
The sintering temperatures employed for the welding together of cold-pressed powders vary with the compressive loads used, the type of powders, and the strength required of the finished part. Compacts of powders utilized in accordance with the present invention are typically sintered at temperatures ranging from about 1000° C. to in excess of 2000° C. for approximately 30 minutes. When a mixture of different powders is to be sintered after pressing and the individual metal powders in the compact have markedly different melting points, the sintering temperatures used can be above the melting point of one of the component powders. The metal with a low melting point will thus become liquid; however, so long as the essential part or major metal powder is not molten, this practice may be employed. When the solid phase or powder is soluble in the liquid metal, a marked delusion of the solid metal through the liquid phase may occur which will develop a good union between the particles and result in a high density.
Most cold-pressed and metal ceramic powders shrink during the sintering operation. In general, factors influencing shrinkage include particle size, pressure used in cold-welding, sintering temperature and time employed during the centering operation. Powders that are hard to compress will cold-shrink less during sintering. It is possible to control the amount of shrinkage that occurs. By careful selection of the powder and determination of the correct pressure for cold-forming it is possible to sinter so as to get minimal volume change. The amount of shrinkage or volume change should be determined so as to allow for this change in the design of the dies used in the process of fabricating a given shape.
The most common type of furnace employed for the sintering of pressed powders is the continuous type. This type of furnace usually contains three zones. The first zone warms the pressed parts and the protective atmosphere used in the furnaces purges the work of any air or oxygen that may be carried into the furnace by the work or trays. This zone may be cooled by water jackets surrounding the work. The second zone heats the work to the proper sintering temperature. The third zone has a water jacket that allows for rapid cooling of the work; and t

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus and method for manufacturing composite articles... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus and method for manufacturing composite articles..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus and method for manufacturing composite articles... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3104673

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.