Apparatus and method for making laser sources and laser...

Coherent light generators – Particular resonant cavity – Mirror support or alignment structure

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C219S121670, C219S121760, C219S121600

Reexamination Certificate

active

06424670

ABSTRACT:

CROSS-REFERENCES TO RELATED APPLICATIONS
Not Applicable
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH AND DEVELOPMENT
Not Applicable
BACKGROUND OF THE INVENTION
1. Fields of the Invention
The present invention relates generally to apparatuses and methods of pre-aligning a laser source and a laser platform, and, more particularly, to pre-aligning a plurality of laser sources each of which has different operating parameters and pre-aligning a plurality of laser material processing platforms each of which has different operating parameters such that any of the laser sources are interchangeable with each other, any of the laser material processing platforms are interchangeable with each other, and any of the laser sources and any of the laser material processing platforms are interfaceable with each other to form a laser material processing system, all without the need for any alignment adjustment during or after any interfacing of the one with the other.
2. Discussion of Background and Prior Art
a. Widespread Laser Material Processing Applications
There are many general types of lasers, including, for example, CO
2
, mercury vapor, ion, nitrogen, die, ruby, and Nd YAG. Lasers have been employed in a wide of industries, including electronics, graphic arts, automotive, and defense, to name just a few. Lasers have been employed in many conventional uses including, cutting (hard or soft materials at high speed or high power or both with accuracies of thousandths of an inch), cladding, drilling, marking, thermal processing, and welding.
In recent years laser materials processing has grown into an enormous industry. In particular, the CO
2
and Nd YAG lasers have been especially popular and have emerged as leading laser types. The laser material processing systems handle a wide variety of materials that can be utilized in many different applications and industries. Whether your need is to create a single prototype or to mass produce thousands of items, laser systems make it easy.
The laser technology is now routinely used to perform a wide variety of non-contact work tasks on a wide variety of materials. The lists are truly endless. For example:
1. A few of the routine laser applications are aerospace components, architectural models, awards/plaque engraving, control panels, decorative etching, deep engraving, desk accessories, diamond scribing, drilling, film/overlay cutting, flexible circuits, flexo-plate production, gasket cutting, medical component marking, membrane switches, metal marking, model making, name badges/id tags, non-contact cutting, part identification/serialization, plastics de-gating, precision scribing, prototyping, rubber stamp & seals, sign making, specialty advertising, stencil making, template & mask production, and textile cutting.
2. A few of the materials which are routinely laser processed are acrylic, anodized aluminum, carbide, cardboard, ceramic substrates, circuit boards, coated metals, composites, fabrics, fiberglass, foam, glass, kevlar, laminated plastics, leather, marble, masonite, matte board, meat, melamine, metal, nylon, paper, plastics, polycarbonate, polyester, pressboard, quartz, rubber, silicon, stone, vinyl, and wood.
Thus, in summary, many problems which require controlled laser material processing might find a potential solution with the CO
2
orNd YAG laser.
b. Types Of Beam Delivery Systems
Typically, small, compact, CO
2
and Nd YAG lasers, are used in many, if not most, of the applications described above. Such lasers are typically installed in a laser platform which provides a sturdy table, in an enclosure with access for loading and unloading a workpiece on which the laser is to perform a work task. Typically such a laser material processing system includes a mounting plate onto which the laser cartridge is mounted, a power supply, a CPU for receiving a computer program to control the work assignment, a control panel, and a beam delivery system.
1. One typical embodiment of an X-Y beam delivery system includes parallel tracks supporting a transverse rail having a reciprocable carriage with a mirror and focusing lens assembly which delivers the laser beam downwardly onto the workpiece secured on the work table in accordance with the work program. See, Gamier U.S. Pat. No. 4,985,780 hereby incorporated herein by reference.
2. Another type of beam delivery system is known in the art as a Galvanometer type wherein two mirrors are each supported on orthogonally placed axes of limited-rotation, moving iron type, servo motors with highly linear torque characteristics over a relatively large rotation angle with capacitively sensed position feedback to the servo amplifier. The combined action of the mirrors and servo motors produces X and Y movements of the laser beam. Each of the motion mechanisms described above is designed to maintain very high production rates.
Typically, such a laser material processing system also includes, a lift system to raise and lower the table for focusing the laser beam while giving solid support and stability to the table and workpiece, and an exhaust system to remove smoke, fumes, and debris.
C. The Problem: An Alignment Is Required After Interfacing A Laser Source With A Laser Platform
As the growth in the use of lasers has exploded, businesses which use lasers in their facilities have grown both in volume and in diversity of applications. This cause and effect relationship has mandated not only that such businesses purchase more laser sources and laser platforms of the kind already in use in their facilities (i.e.,, redundant systems), but also, additional laser sources with different operating parameters (e.g., power) and additional laser platforms with different characteristics (e.g., size, speed, ergonomics, and controls) (i.e., diversified systems) so that the businesses could better mix and match laser power and platform characteristics to the material processing requirements of the particular application.
Thus, there is an unfilled need for, and it is an object of the present invention to provide, laser sources and laser material processing platforms which are rapidly interchangeable and interfaceable such that a small business can enter the laser material processing field with the smallest laser source and laser material processing platform, add more powerful laser sources and bigger laser material processing platforms as their business grows, and are able to rapidly reconfigure the components in their line to form laser material processing systems that can process any one of a wide variety of materials with optimal performance and great efficiency.
BRIEF SUMMARY OF THE INVENTION
Set forth below is a brief summary of the invention which achieves the foregoing and other objects and provides the foregoing and hereafter stated benefits and advantages in accordance with the structure, function and results of the present invention as embodied and broadly described herein. Applicants' invention includes independently both the apparatus and the methods described herein which achieve the objects and benefits of the present invention. Both formats of the invention are described below, and it is applicants' intention to claim both formats even though from time to time below for purposes of clarity and brevity applicants will use either one or the other format to describe various aspects and features of the invention.
One aspect of the invention is a laser source having a beam path which coincides with an optical axis of a beam delivery system of each laser material processing platform in a line including the optical axis of the beam delivery system of each laser material processing platform in the line aligned to a predetermined. reference, and the beam path of the laser source coinciding with the optical axis of a beam delivery system of one laser material processing platform in the line.
A second aspect of the invention is a laser material processing platform having a beam delivery system the optical axis of which coincides with the beam path of each laser source in a line including the beam path

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus and method for making laser sources and laser... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus and method for making laser sources and laser..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus and method for making laser sources and laser... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2890373

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.