Apparatus and method for gyroscopic propulsion

Machine element or mechanism – Gyroscopes – Multiple gyroscopes

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C074S005460

Reexamination Certificate

active

06705174

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Technical Field
The present invention relates generally to rotational forces and more specifically relates to creating a linear movement from a system of rotational forces.
2. Background Art
Propulsion of an object not in contact with a relatively fixed body, for example the ground or a planet surface, is generally obtained only by movement of air or other gases in a direction substantially opposite to the movement of the object under the effect of the propulsion systems. In the absence of a suitable atmosphere, for example in space, propulsion is generally obtained by rocket systems or by other similar systems which involve the projection of particles at high velocity from the object, in the opposite direction of the object's intended travel. Such systems, by their very nature and design, require the consumption of significant quantities of fuel since the fuel or the byproducts of the consumption or expulsion of the fuel forms the particles to be projected.
Attempts have been made for many years to develop a propulsion system which generates linear movement from a rotational drive. Examples of this type of arrangement are shown in a book entitled “The Death of Rocketry” published in 1980 by Joel Dickenson and Robert Cook.
However none of these previous arrangements has in any way proved satisfactory and if any propulsive effect has been obtained this has been limited to simple models. One of the problems with the previous attempts is the limited understanding of the true nature of the laws of motion and the nature of the physical universe. The laws of motion, as currently defined and used in the scientific community, are only accurate to a limited degree of precision. Many conditions and qualifications are required to apply them to the physical world as it actually exists. This is far more true for the quantification of angular motion than it is for more linear motion. The laws of motion postulated by Newton are built upon his first law of inertia and are generally regarded as the foundation of Einstein's theory of relativity.
In the cosmos, everything is moving and there is no such thing that is perfectly static and motionless. The very first law of physics involves concepts that are only proper in a given frame of reference. Consider a body “at rest.” The idea of “at rest” implies a lack of motion. However, the object is only “at rest” with respect to the relative motion of the object's immediate environment. Matter “at rest” is actually moving in patterns of motion that create the appearance of static motionlessness, yet the accumulated energies within the matter, in addition to the relative motion of the composite cosmic environment, is well known and provides sufficient evidence that everything is in a state of constant motion. Inertia, as it is generally referred to in relation to the laws of physics, represents relatively balanced force relationships creating relatively constant and stable motion patterns.
The basic formulas typically used to describe various angular forces are sufficient to explain only the most basic concepts relative to the behavior of spinning masses. They are the accepted formulas of Newtonian physics for linear motion applied to rotation with the linear components exchanged for angular ones. Rotational inertia is generally defined with the appropriate embellishments necessary to include the shape of the mass about the axis of rotation as an additional factor in the magnitude of the inertia.
Newton's first law of motion dealing with inertia and the inertial reference frames used in the calculation of linear forces do not, in the strictest sense, apply to rotational force associations. Inertial reference frames are usually linear by qualification and rotating frames of reference are never inertial. This fact is not a significant factor to include in the calculations of most linear forces. In most cases of ordinary motion, the angular components in the inertial reference frame are negligible. For example, air resistance is frequently a negligible factor in certain cases and, in those cases, can therefore be ignored. Or as the limitations of the linear velocity of things is ignored unless sufficiently close to the recognized maximum. Similarly, the non-linear components of most inertial reference frames ignored, and can be, for most ordinary kinds of motion. The additional factor of shape forever qualifies the angular motion aspects of particle associations with respect to the force of that association. This is the most meaningful and valuable factor separating the behavior of angular force from linear force.
Motion on a scale large enough with respect to the earth and the cosmic environment to be substantially non-linear can never be ignored. And this is not the case with most kinds of ordinary motion. In the fundamentals of physics, this fact is considered significant only for large-scale motions such as wind and ocean currents, yet “strictly speaking” the earth is not an inertial frame of reference because of its rotation. The earth's non-linear character is observed in the case of the Foucault pendulum, the Coriolis Effect, and also in the case of a falling object which does not fall “straight” down but veers a little, with the amount of deviation from its path dependant on the period of time that elapses during the fall. All events are subject to this fact to a greater or lesser extent.
The mathematical purpose of inertial reference frames is to isolate a motion event in order to identify force components. Acceleration will only be observed in systems that have a net force in a given direction and is not balanced or zero. Since this is only valid for the linear components of motion, it works well for all kinds of motion phenomena that are primarily linear in nature; the associated angular component being either idealized or considered negligible. Only the linear force aspects of any of these measurements hold precisely true to the formulas of mathematics describing them. To the degree that angular components of motion are associated with the reference frame used for measuring and calculating force relationships, and to the extent which these angular components are not included in the formulas for calculation, is to the degree these formulas are in error. The fact that angular reference frames cannot and do not represent inertial reference frames indicates that the effect of angular force is not so easily isolated in order to identify component effects.
Mathematical analysis of rotational forces reveal that the formulas describing rotational motion are also limited in additional respects. Motions that include anything more than ninety degrees of rotation can not be used as true vectors. The fundamental technique of vectors, used to determine the composite result of the effect of multiple forces, will not work for rotational motion due to the inherent lack of integrity in the model. Individual angular displacements, unless they are small, can't be treated as vectors, though magnitude and direction of rotational velocity at a particular point in time and space can be given, which is necessary. But this alone is not sufficient, because the rules of vector mathematics do not hold with regard to the order of the addition of these forces. If the displacement of an object is given by a series of rotational motions, the resulting angular position of the object is different depending on the order of the sequence of angular motions. Vector mathematics require that addition be commutative (a+b+c=c+b+a). To calculate the motion of the precessional adjustments which multiple disturbing torques have on a spinning mass in a dynamic environment requires extremely complex mathematical calculations and is not accounted for in the previous attempts to translate rotational energy into linear movement.
The fact that these precessional adjustments can be affected by a strong magnetic field, and that there are no mathematical formulas that include this phenomenon as a factor of cal

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus and method for gyroscopic propulsion does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus and method for gyroscopic propulsion, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus and method for gyroscopic propulsion will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3225576

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.