Apparatus and method for functional magnetic stimulation

Surgery – Magnetic field applied to body for therapy – Electromagnetic coil

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C600S009000

Reexamination Certificate

active

06213933

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The purpose of this invention is to employ Functional Magnetic Stimulation by electro-magnetic induction to enhance fibrinolysis.
2. Description of the Art Practices
In most normally functioning human subjects sufficient muscle function exists to minimize the formation of embolisms or thrombosis. However, any individual may develop embolisms or thrombosis due to periods of inactivity. Such inactivity often results from a hospital stay. In individuals with conditions such as paraplegia, quadriplegia or for comatose patients the periods of inactivity are prolonged. For any hospital patient there is a need for stimulation, particularly of the legs to avoid the formation of embolisms or thrombosis.
An article entitled
Effects of External Pneumatic Intermittent Compression on Fibrinolysis in Man
published in The Lancet, pages 1412 et seq., Dec. 22, 1973 by Allenby et al., discusses the needs of surgical patients. In particular, Allenby et al., found that external pneumatic intermittent compression applied to the legs of patients undergoing surgery stimulates fibrinolysis during the postoperative period, when normally fibrinolysis would be expected to be depressed. Allenby et al., determined that intermittent compression applied externally to the calf during surgery and for 48 hours afterwards was a safe and effective method of preventing postoperative venous thrombosis in patients with non-malignant disease.
Richard T. Katz et al., in an article entitled,
Functional Electric Stimulation to Enhance Systemic Fibrinolytic Activity in Spinal Cord Injury Patients
published Arch Phys Med Rehabil Vol 68, July 1987 discusses electrical stimulation of spinal cord injury patients. The Katz, et al., article discusses the functional electric stimulation of muscle has been used to decrease the incidence of postoperative deep vein thrombosis in neurologically intact individuals.
In U.S. Pat. No. 3,658,651 issued Apr. 25, 1972 to Maclean there is discussed a method of treatment by placing a patient or an animal to be treated between the poles of an electro-magnet. The patient or an animal is then subjected to an a pulsating magnetic field induced by an intermittent direct current to the electro-magnet with the peak intensity of each pulse being at least 2,000 gauss. The Maclean patent discusses as potential effects of his treatment the clearing of the stimulation of the endocrine glands, relief of pain, suppression of cough, and pleural effusion, energizing effects, clearing of the sensorium, relaxation of muscle spasm, development of peace of mind, and sense of well being, and increase of libido.
Linder in U.S. Pat. No. 5,190,036 issued Mar. 2, 1993 teaches an abdominal binder comprising an electrode belt for stimulating cough in a quadriplegic patient. Linder further discusses stimulating cough in a quadriplegic patient Chest Volume 103 number Jan. 1, 1993 pages 166-199 article entitled Functional Electrical Stimulation to Enhance Cough in Quadriplegia.
Mouchawar, in an article entitled Closed-Chest Cardiac Stimulation with a Pulsed Magnetic Field,
Medical
&
Biological Engineering
&
Computing
March 1992, page 162 discusses magnetic stimulator to generate intense, rapidly changing magnetic fields capable of stimulating nerves. Magnetic resonance systems utilizing coplanar coils to provide a pulsed magnetic field with an average of 12 kilojoules to achieve closed-chest magnetically induced ectopic beats. The Mouchawar article also describes the peak-induced electrical field for threshold stimulation at 213 V/m for a 571 micro-second damped sine wave pulse.
Mouchawar et al., in an article entitled Magnetic Electrophrenic Nerve Stimulation to Produce Inspiration, published in the
Annals of Biomedical Engineering
, Volume 19, 1991 pages 219-221 discusses producing inspiration in a dog. The induced inspiration reported by Mouchawar et al., is plotted by integrating the inspiratory air-flow velocity record.
The author of the present patent published a note in entitled Magnetic Stimulation of the Intercostal Muscles at page 1237 of the Archives of Physical Medicine and Rehabilitation volume 74, November 1993. The present author has contributed to a note entitled the High Frequency Magnetic Stimulation of the Inspiratory Muscles which was published in
Muscle
&
Nerve
October 1993 Volume 16 number 10 at page 1088.
Manual methods of aiding respiration are discussed in U.S. Pat. No. 4,977,889 issued Dec. 18, 1990 to Budd. In the Budd patent a vest is utilized to stimulate respiration.
In a paper entitled Thoracic Spinal Nerve and Root Conduction: A Magnetic Stimulation Study Magnetic Stimulation of the Thoracic Nerves is discussed by Chokroverty et al. The Chokroverty et al., article was published in
Muscle
&
Nerve
September 1995 Volume 18, number 10 at pages 987-991.
Percutaneous magnetic stimulation is discussed in an article entitled Ventilatory Effects of Percutaneous Magnetophrenic Stimulation by Nagano et al. The Nagano et al., article was published in the
Frontiers of Medical Biological Engineering
, Volume 3, Number 2, pages 97-112 in 1991. An article entitled Cough in Spinal Cord Injured Patients: Comparison of Three Methods to Produce Cough was published by Jaeger et al., in the
Archives of Physical Medical Rehabilitation
Volume 74, December 1993 at pages 1358-1361. The Jaeger article, discusses various methods of phrenic nerve stimulation. The Jaeger et al., article discloses artificial cough reflex stimulation in U.S. Pat. No. 5,314,454 issued May 24, 1994.
The effect of lung volume on transdiaphrematic pressure is discussed in an article by Hamnegard et al. The Hamnegard et al., article appears in the
European Respiratory Journal
1995 Volume 8, pages 1532-1536.
Voorhees III et al., in a technical note in the
Journal of Clinical Engineering
September/October 1990 page 407 entitled Magnetically Induced Contraction of the Inspiratory Muscles in Dog discusses short-duration inspirations by discharging a capacitor bank into an excitation coil placed over the lower right chest. The Voorhees III article discusses utilizing the construction of the excitation coil as having 59 turns of ¼ inch copper ribbon 0.0200 inches thick wound on a ¾″ diameter plastic rod where the outer diameter of the coil is 3.75″ and the entire coil is potted in silicon rubber.
The inductance per Voorhees III et al., is 139 micro-H and the resistance is 0.084 ohms. The current was delivered to the coil from a 100-micro F capacitor bank. The resonant frequency of the system was 1350 Hz and the damping coefficient was 0.05. Cadwell Laboratories, Inc. in Application Notes AP-2 Rev. 1 Feb. 22, 1990, discusses high speed magnetic stimulator characteristics.
In an article entitled Developing a More Focal Magnetic Stimulator Part I: Some Basic Principals by Cohen et al., as recorded in
Journal of Clinical Neurophysiology
, 8 (1); 102-111 (1991) magnetic stimulation is discussed generally. Similar disclosures are made by Yunokuchi et al., in the
Journal of Clinical Neurophysiology
, 8 (1); 112-120 (1991) in an article entitled Developing a More Focal Magnetic Stimulator. Part II: Fabricating Coils and Measuring Induced Current Distributions.
The reader is also referred to
Magnetic Stimulation in Clinical Neurophysiology
edited by Sudhansu Chokroverty and published by Butterworths, Boston, London, Singapore, Sydney, Toronto, and Wellington Chapter 3 pages 17 through 32, pages showing FIGS.
7-18; 14-1; 17-4; 17-10, 18-3 and 18-4.
Further reference is made to Magnetic Brain Stimulation With a Double Coil: The importance of Coil Orientation by Mills et al., published in
Electroencephalography and Clinical Neurophysiology
, 85 (1992) pages 17-21. Reference is also made to a publication entitled the Effects of Coil Design on Delivery of Focal Magnetic Stimulation-Technical Considerations Cohen et al., in
Electroencephalography and Clinical Neurophysiology
, 75 (1990) pages 350-357.
The assessment of nerve and muscle function is

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus and method for functional magnetic stimulation does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus and method for functional magnetic stimulation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus and method for functional magnetic stimulation will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2464048

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.