Apparatus and method for extruding single-component liquid...

Plastic article or earthenware shaping or treating: apparatus – Shaping orifice and downstream work contacting gaseous... – Orifice for filaments or fibers

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C425S463000, C425SDIG002, C425S131500, C264S172140

Reexamination Certificate

active

06814555

ABSTRACT:

FIELD OF THE INVENTION
The present invention generally relates to extruding two separate liquid materials into filaments or strands and, more particularly, to a melt spinning apparatus for spunbonding or meltblowing two separate liquid materials into multi-component filaments.
BACKGROUND OF THE INVENTION
Melt spun fabrics manufactured from synthetic thermoplastics have long been used in a variety of applications including filtration, batting, fabrics for oil cleanup, absorbents such as those used in diapers and feminine hygiene products, thermal insulation, and apparel and drapery for medical uses.
Melt spun materials fall in the general class of textiles referred to as nonwovens since they comprise randomly oriented filaments, or fibers, made by entangling the fibers through mechanical means. The fiber entanglement, with or without some interfiber fusion, imparts integrity and strength to the fabric. The nonwoven fabric may be converted to a variety of end use products as mentioned above.
Although melt spun nonwovens may be made by a number of processes, the most popular processes are meltblowing and spunbond processes, both of which involve melt spinning of thermoplastic material. Meltblowing is a process for the manufacture of a nonwoven fabric wherein a molten thermoplastic is extruded from a die tip to form a row of filaments. The fibers exiting the die tip are immediately contacted with converging sheets or jets of hot air to stretch or draw the filaments down to microsize diameter. The fibers are then deposited onto a collector in a random manner and form a nonwoven fabric.
The spunbond process involves the extrusion of continuous filaments through a spinneret. The extruded filaments are maintained apart and the desired orientation of the filaments is achieved, for example, by electrical charges, by controlled air streams, or by the speed of the collector. The filaments are collected on the collector and bonded by passing the layer of filaments through compacting roll and/or hot roll calendaring.
Nonwoven materials are used in such products as diapers, surgical gowns, carpet backings, filters and many other consumer and industrial products. The most popular machines for manufacturing nonwoven materials use meltblown and spunbond apparatus. For certain applications, it is desirable to utilize multiple types of thermoplastic liquid materials to form individual cross-sectional portions of each filament. Often, these multi-component filaments comprise two components and, therefore, are more specifically referred to as bicomponent filaments. For example, when manufacturing nonwoven materials for use in the garment industry, it may be desirable to produce bicomponent filaments having a side-by-side construction. One important consideration involves the cost of the material. For example, one strand of inexpensive material may be combined with a strand of more expensive material. The first strand may be formed from polypropylene or nylon and the other strand may be formed from a polyester or co-polyester. In addition, the two types of material may contract a different amount when drying or cooling, creating a curly filament with desirable properties.
Many other multi-component fiber configurations exist, including sheath-core, tipped, and microdenier configurations, each having its own special applications. Various material properties can be controlled using one or more of the component liquids. These include, as examples, thermal, chemical, electrical, optical, fragrance, and anti-microbial properties. Likewise, many types of die tips exist for combining the multiple liquid components just prior to discharge to produce filaments of the desired cross-sectional configuration.
Various apparatus form bi-component filaments with a die tip comprising vertically or horizontally stacked plates. In particular, a melt blowing die tip directs two flows of liquid material to opposing sides near the top of a stack of the vertical plates. A spunbond die tip directs two different material flows to the top plate of a stack of horizontal plates. Liquid passages etched or drilled into the vertical or horizontal stack of plates direct the two different types of liquid material to a location at which they are combined within the die tip and then extruded at the discharge outlets as multi-component filaments. Various cross-sectional configurations of filaments are achieved, such as side-by-side and sheath-core configurations.
Using a stack of thin plates in either a vertical or horizontal orientation manner suffers from imperfect seals between plates. In a production environment, liquid pressure will cause adjacent plates to move slightly away from each other. Thus, small amounts of liquid of one type can leak through these imperfect seals, causing “shot” or small balls of polymer to be formed in the extruded filaments. The shot causes the multi-component filaments to form with problems such as reduced strength or increased roughness. Also, the stacked plates may not offer a substantial thermal barrier between the two types of liquid material. Consequently, the filaments of each liquid material may not combine at their respective optimum temperatures, possibly adversely affecting extrusion thereof.
Other apparatus avoid the use of stacked plates by having the two types of liquid material combine in a cavity prior to extrusion of the through multiple discharge passages. More specifically, two different types of liquid materials, such as thermoplastic polymers, initially reside side-by-side in the cavity and are delivered under pressure to the discharge passages where they are extruded in side-by-side relation as bicomponent filaments. Since the two liquid materials reside in side-by-side relation in the die cavity and discharge passages, this may lead to thermal problems or problems related to the materials improperly combining or mixing prior to extrusion.
For these reasons, it is desirable to provide apparatus and methods for melt spinning multi-component filaments without encountering various problems of prior melt spinning apparatus.
SUMMARY OF THE INVENTION
The present invention provides methods and apparatus for melt spinning multiple types of liquid materials into multi-component filaments. This includes, for example, melt spinning apparatus and methods related to meltblown and spunbond applications. In particular, a spinpack or die tip of a melt spinning apparatus produces multi-component filaments by extruding two single-component filaments from a die tip that combine after extrusion to thereby form multi-component filaments. The two liquid materials do not contact one another until after each is extruded through a separate orifice in the die tip. Maintaining the separation of the two types of liquid material throughout the spinpack prevents premature leakage between two liquid flows and allows for maintaining an optimized temperature for each type of liquid material for proper extrusion.
The method of this invention produces multi-component filaments by extruding a first strand of a first type of liquid material and simultaneously extruding a second strand of a second type of liquid material. The two strands combine together after the extrusion of each and thereby form a multi-component filament, for example, having essentially a side-by-side cross-sectional configuration of the two component materials.
The melt spinning apparatus of this invention comprises a die tip having a first liquid input configured to communicate with a supply of the first type of liquid material and having a second liquid input configured to communicate with a supply of the second type of liquid material. The die tip further includes first outlets or orifices for extruding first strands of the first type of liquid material and second outlets or orifices for extruding second strands of the second type of liquid material. Each first outlet is adjacent to a corresponding one of the second outlets for extruding respectively the first and second strands that combine together after extrusion into a multi-component fil

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus and method for extruding single-component liquid... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus and method for extruding single-component liquid..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus and method for extruding single-component liquid... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3310430

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.