Apparatus and method for embedding and extracting...

Cryptography – Video cryptography – Video electric signal modification

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C380S252000, C380S043000, C380S031000, C713S176000, C713S152000, C382S191000, C382S132000

Reexamination Certificate

active

06683958

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to apparatus and methods for encoding and decoding information in analog signals, such as audio, video and data signals, either transmitted by radio wave transmission or wired transmission, or stored in a recording medium such as optical or magnetic disks, magnetic tape, or solid state memory.
2. Background and Description of Related Art
An area of particular interest to certain embodiments of the present invention relates to the market for musical recordings. Currently, a large number of people listen to musical recordings on radio or television. They often hear a recording which they like enough to purchase, but don't know the name of the song, the artist performing it, or the record, tape, or CD album of which it is part. As a result, the number of recordings which people purchase is less than it otherwise would be if there was a simple way for people to identify which of the recordings that they hear on the radio or TV they wish to purchase.
Another area of interest to certain embodiments of the invention is copy control. There is currently a large market for audio software products, such as musical recordings. One of the problems in this market is the ease of copying such products without paying those who produce them. This problem is becoming particularly troublesome with the advent of recording techniques, such as digital audio tape (DAT), which make it possible for copies to be of very high quality. Thus it would be desirable to develop a scheme which would prevent the unauthorized copying of audio recordings, including the unauthorized copying of audio works broadcast over the airwaves. It is also desirable for copyright enforcement to be able to insert into program material such as audio or video signals digital copyright information identifying the copyright holder, which information may be detected by appropriate apparatus to identify the copyright owner of the program, while remaining imperceptible to the listener or viewer.
Various prior art methods of encoding additional information onto a source signal are known. For example, it is known to pulse-width modulate a signal to provide a common or encoded signal carrying at least two information portions or other useful portions. In U.S. Pat. No. 4,497,060 to Yang (1985) binary data is transmitted as a signal having two differing pulse-widths to represent logical “0” and “1” (e.g., the pulse-width durations for a “1” are twice the duration for a “0”). This correspondence also enables the determination of a clocking signal.
U.S. Pat. No. 4,937,807 to Weitz et al. (1990) discloses a method and apparatus for encoding signals for producing sound transmissions with digital information to enable addressing the stored representation of such signals. Specifically, the apparatus in Weitz et al. converts an analog signal for producing such sound transmissions to clocked digital signals comprising for each channel an audio data stream, a step-size stream and an emphasis stream.
With respect to systems in which audio signals produce audio transmissions, U.S. Pat. Nos. 4,876,617 to Best et al. (1989) and 5,113,437 to Best et al. (1992) disclose encoders for forming relatively thin and shallow (e.g., 150 Hz wide and 50 dB deep) notches in mid-range frequencies of an audio signal. The earlier of these patents discloses paired notch filters centered about the 2883 Hz and 3417 Hz frequencies; the later patent discloses notch filters but with randomly varying frequency pairs to discourage erasure or inhibit filtering of the information added to the notches. The encoders then add digital information in the form of signals in the lower frequency indicating a “0” and in the higher frequency a “1”. In the later Best et al. patent an encoder samples the audio signal, delays the signal while calculating the signal level, and determines during the delay whether or not to add the data signal and, if so, at what signal level. The later Best et al. patent also notes that the “pseudo-random manner” in moving the notches makes the data signals more difficult to detect audibly.
Other prior art techniques employ the psychoacoustic model of the human perception characteristic to insert modulated or unmodulated tones into a host signal such that they will be masked by existing signal components and thus not perceived. See, e.g. Preuss et al., U.S. Pat. No. 5,319,735, and Jensen et al., U.S. Pat. No. 5,450,490. Such techniques are very expensive and complicated to implement, while suffering from a lack of robustness in the face of signal distortions imposed by perception-based compression schemes designed to eliminate masked signal components.
U.S. Pat. No. 5,613,004 to Cooperman et al. discloses a method for determining where to encode additional information into a stream of digital samples, wherein two pseudorandom keys are used to determine into which frequency bins of the digital data stream the additional information is to be encoded. A primary key has a number of bits equal to the sample window size. A secondary key or convolution mask has an arbitrary number of bits as a time mask, with each bit corresponding to a window. For each window, an encoder proceeds through each frequency bin, taking the corresponding bit of the primary key or mask and the bit of the convolutional mask corresponding to the window, and subjecting those bits to a boolean operation to determine whether or not the bin is to be used in the encoding process to encode the bits of the additional information message. When the last frequency bin in the window is processed, the next bit of the convolutional mask is retrieved and the primary mask is reset to the first bit. When the last window corresponding to the last bit of the convolutional mask is reached, the convolutional mask is reset to the first bit. Cooperman does not describe any specific method for the actual encoding of the additional information bits into the digital stream.
The prior art fails to provide a method and an apparatus for encoding and decoding auxiliary analog or digital information signals onto analog audio or video frequency signals for producing humanly perceived transmissions (i.e., sounds or images) such that the audio or video frequency signals produce substantially identical humanly perceived transmission prior to as well as-after encoding with the auxiliary signals. The prior art also fails to provide relatively simple apparatus and methods for encoding and decoding audio or video frequency signals for producing humanly perceived audio transmissions with signals defining digital information. The prior art also fails to disclose a method and apparatus for limiting unauthorized copying of audio or video frequency signals for producing humanly perceived audio transmissions.
SUMMARY OF THE INVENTION
The present invention provides apparatus and methods for embedding or encoding, and extracting or decoding, digitized information in an analog host or cover signal in a way which has minimal impact on the perception of the source information when the analog signal is applied to an appropriate output device, such as a speaker, a display monitor, or other electrical/electronic device.
The present invention further provides apparatus and methods for embedding and extracting machine readable signals in an analog cover signal which control the ability of a device to copy the cover signal.
In summary, the present invention provides for the encoding or embedding of a data signal in an analog host or cover signal, by modulating the host or cover signal so as to modify a distributed feature of the signal within the predefined region. The distributed feature of the host signal is modified to a predefined quantization value which corresponds to a data symbol or binary digit of the data signal to be embedded. Subsequently, the embedded data signal is recovered by detecting the modified distributed feature values and correlating the detected values with the predefined relationship between data symbols and quantized distributed feature

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus and method for embedding and extracting... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus and method for embedding and extracting..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus and method for embedding and extracting... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3259314

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.