Apparatus and method for dosing a product

Dispensing – Resilient wall – Supply container delivering to receiving chamber

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C222S213000, C222S365000, C222S449000, C222S344000, C222S341000, C222S389000, C222S362000, C222S252000

Reexamination Certificate

active

06484906

ABSTRACT:

The present invention relates to an apparatus for dispensing doses of fluid product, such as, for example, doses of a predetermined volume of a cosmetic product such as a shampoo, a conditioner, a gel, a lotion, a milk, etc. The invention also relates to a device including the apparatus and a container. The invention further relates to a method of dosing a product.
In the cosmetics field, a good number of haircare products, particularly shampoos, are packaged in a container having deformable walls and a neck which is closed off by a wall having a center portion having one or more small holes for expulsion of the product. In order to dispense the product, the container is turned upside down. Pressure exerted on the deformable walls of the container allows the product to be forced out through the hole or holes. The product is collected in the user's palm and applied to his or her hair. However, this simple operation does not allow the amount of product dispensed to be dosed.
Of course, there are devices for dosing a product to be dispensed, but many of these devices have a complexity such that their cost is completely inconsistent with the economic requirements of certain distribution channels, in particular the mass market.
Some devices use a dosing arrangement of the type which includes a dosing chamber formed inside a movable member having a free end provided with openings capable of allowing dosed expulsion of the product. The openings in the dosing chamber are exposed by means of pressure exerted by the product on one face of the member. The product then flows under gravity when the openings are exposed. During expulsion of the product, the moveable member emerges substantially outside the dosing chamber. Such an arrangement is particularly appropriate for the dosed dispensing of very liquid products, such as drinks. On the other hand, such a system cannot easily be used for dispensing viscous products, such as those normally used especially in the cosmetics field. This is because the viscosity of these products does not allow the dose of product to flow sufficiently rapidly merely under the effect of its own weight.
Some other devices use a dosing arrangement comprising a dosing chamber inside which a piston is slideably fitted. An axial channel passes through a stem attached to the piston and terminates near the free end of the stem in a radial portion which emerges in an outlet. In the rest position, the outlet is closed off. In order to dispense a dose of product, the outlet is exposed due to the pressure of the product being exerted on the piston. The product flows through a radial portion of the channel, passes into the axial part of the channel and leaves through the radial outlet. Since the product necessarily passes through this axial channel made inside the stem, the device is particularly unsuitable for high flow rates, particularly in the case of products having a high viscosity. In addition, such an axial channel is subject to clogging, particularly when the product has not been used for a long period of time, possibly making the device completely unusable. Finally, localized dispensing of the product into the palm of the hand is one of the most difficult operations to carry out successfully.
Other configurations, such as that described in FR-A-2,578,806, include a second piston acting as a closure for an outlet. This configuration renders axial expulsion of the product difficult or even impossible.
Other dosing devices present a number of problems. Among these problems are, in particular, the relatively large number of parts, the complexity which results therefrom, the cost, the difficulty of use, problems of sealing, the problem of dispensing a precise dose, etc.
The invention optionally overcomes one or more limitations of the related art describe above. Certain aspects of the invention could be practiced without necessarily obviating one or more of these limitations.
A first optional aspect of the invention, includes a dosing nozzle, intended to be fitted onto a container containing a product, such as a cosmetic product, the nozzle including a dosing cavity in selective communication with the container via at least one inlet, the cavity being moveable between a first position and a second position in which it occupies a minimum volume; wherein the cavity is delimited partly by first and second pistons capable of sliding inside a fixed body; wherein the first position is fixed to a closure member which can move with respect to the second piston, and is capable, selectively, of closing off/exposing at least one outlet of the dosing cavity delimited at least partly by the second piston; wherein, during a first phase of the movement of the dosing cavity, the first piston is entrained by the second piston through the effect of the pressure of the product being exerted on the second piston and, during a second phase of the movement of the dosing cavity, is entrained by the pressure of the product being exerted on the first piston; and wherein the second piston is immobilized in translation during this second phase.
In certain optional embodiments of the invention, the first piston may be fixed relative to the closure member in at least one direction such as the axial direction. The first piston could be a single piece with the closure member, especially one obtained by molding.
Optionally, the dosing nozzle could be economical to produce. The nozzle may be simple and reliable to use and may be used for high-viscosity products. The product may be dosed in a relatively precise manner and it may be dispensed in a very localized manner into the palm of the hand.
In some optional embodiments, the degree of sealing between the peripheral edges of the first and second pistons and the inner surface of the body of the dosing nozzle depends to a large extent on the viscosity of the product, on the degree of inertia of the system which is deemed to be acceptable, and on the comfort sought when dispensing. For example, the nozzle could be configured so that when the product contains a great deal of liquid, there is a tight contact between the peripheral edges and the inner surface.
Optionally, the at least one expulsion passage is defined between a linking element at the end of which the closure member is formed, and an opening formed in the second piston. By modifying the number of passages and their size, it may be possible to a large extent to alter the expulsion flow rate of the product. In the case of a closure element whose cross section is in the form of a cross, four flow passages may be defined for the product. This flexibility in the configuration of the at least one expulsion passage may allow the dispensing of products having a viscosity chosen from the series ranging from very liquid products to very viscous products, such as shampoos or gels.
Optionally, the nozzle may employ a limited number of parts whose production, for example by moulding, does not involve the use of complicated, expensive moulds. For a shampoo, the volume of the dosing chamber may be on the order of about 5 ml., for example.
The container may have deformable lateral walls. The pressure of the product on the second piston, then on the first, may be obtained by pressure exerted on the walls. There may be means allowing an intake of air into the container when the pressure on the walls ceases, in such a manner as to offset the reduction in the product volume inside the container after a dose of product has been dispensed. This configuration optionally may allow dispensing actuation by hand movements similar to hand movements conventionally employed, in particular in the field of cosmetics.
According to another embodiment, the at least one inlet of the dosing cavity may be delimited at least partly by the first piston. The dosing cavity may be in communication with the container during the first phase of the movement of the dosing cavity and isolated from the container during the second phase. The outlet or outlets may be closed during the first phase of the movement and open during the

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus and method for dosing a product does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus and method for dosing a product, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus and method for dosing a product will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2976240

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.