Dispensing – Floating piston with plural or alternate discharge
Reexamination Certificate
2001-05-30
2002-07-09
Yuen, Henry C. (Department: 3754)
Dispensing
Floating piston with plural or alternate discharge
C222S205000, C222S207000, C222S212000, C222S492000
Reexamination Certificate
active
06415961
ABSTRACT:
The present invention relates to an apparatus for dispensing doses of fluid product, such as, for example, doses of a predetermined volume of a cosmetic product such as a shampoo, a conditioner, a gel, a lotion, a milk, etc. The invention also relates to a device including the apparatus and a container. The invention further relates to a method of dosing a product.
In the cosmetics field, a good number of haircare products, particularly shampoos, are packaged in a container having deformable walls and a neck which is closed off by a wall having a center portion having one or more small holes for expulsion of the product. In order to dispense the product, the container is turned upside down. Pressure exerted on the deformable walls of the container allows the product to be forced out through the hole or holes. The product is collected in the user's palm and applied to his or her hair. However, this simple operation does not allow the amount of product dispensed to be dosed.
Of course, there are devices for dosing a product to be dispensed, but many of these devices have a complexity such that their cost is completely inconsistent with the economic requirements of certain distribution channels, in particular the mass market.
Some devices use a dosing arrangement of the type which includes a dosing chamber formed inside a movable member having a free end provided with openings capable of allowing dosed expulsion of the product. The openings in the dosing chamber are exposed by means of pressure exerted by the product on one face of the member. The product then flows under gravity when the openings are exposed. During expulsion of the product, the moveable member emerges substantially outside the dosing chamber. Such an arrangement is particularly appropriate for the dosed dispensing of very liquid products, such as drinks. Such a system cannot easily be used for dispensing viscous products, such as those normally used especially in the cosmetics field. This is because the viscosity of these products does not allow the dose of product to flow at a sufficient pace merely under the effect of its own weight.
Some other devices use a dosing arrangement comprising a dosing chamber inside which a piston is slideably fitted. An axial channel passes through a stem attached to the piston and terminates near the free end of the stem in a radial portion which emerges in an outlet. In the rest position, the outlet is closed off. In order to dispense a dose of product, the outlet is exposed due to the pressure of the product being exerted on the piston. The product flows through a radial portion of the channel, passes into the axial part of the channel and leaves through the radial outlet. Since the product necessarily passes through this axial channel made inside the stem, the device is particularly unsuitable for high flow rates, particularly in the case of products having a high viscosity. In addition, such an axial channel is subject to clogging, particularly when the product has not been used for a long period of time, possibly making the device completely unusable. Finally, localized dispensing of the product into the palm of the hand is one of the most difficult operations to carry out successfully.
Other dosing devices present a number of problems. Among these problems are, in particular, the relatively large number of parts, the complexity which results therefrom, the cost, the difficulty of use, problems of sealing, the problem of dispensing a precise dose, etc.
The invention optionally overcomes one or more limitations of the related art described above. Certain aspects of the invention could be practiced without necessarily obviating one or more of these limitations.
According to a first aspect of the invention, a dispensing member may be associated with a container containing a product. The dispensing member may comprise a variable volume chamber having a piston slideably guided inside the body of the dispensing member. The piston may be capable, in response to pressure exerted by the product, of moving between a first position in which the chamber has a maximum volume and a second position in which the chamber has a minimum volume. The movement of the piston may dispense a volume of product through at least one outlet. The outlet may be closed off when the piston is in the first and second positions. The chamber may be capable of communicating with the container such that the volume of product dispensed in response to the movement has a fixed component corresponding to the difference between the maximum volume and the minimum volume and a variable component (e.g., continuous component) linked to the conditions of exertion of the pressure by the product on the piston.
The volume of product dispensed in response to the movement may have a fixed component and a variable component because of an optional permanent communication between the variable volume chamber and the container during substantially the entire movement of the piston between the first and second positions.
The variable component corresponds to the amount of product passing from the container towards the variable volume chamber before the piston-reaches the second position. At least when the piston moves from the first to the second position and when it returns from the second to the first position, the variable volume chamber may be in communication with the container.
Throughout the present application, “conditions of exertion of pressure” generally refers to the value of the pressure exerted and of the duration for which this pressure is exerted. For example, a high amount of pressure applied for a short duration will cause the dispensing of a dose having essentially a fixed component. This is because a high pressure applied suddenly may cause the rapid passage of the piston into the position in which the outlet is closed off, thus limiting the volume of product able to pass continuously from the container towards the variable volume chamber.
Conversely, pressure of lower value applied for a longer period may cause the dispensing of a dose with a large variable component, for example. This is because, to a degree, such a moderate force may not be sufficient to cause the piston to pass into the position in which the outlet is closed off. Therefore, dispensing may carry on continuously until the container is substantially empty.
In one exemplary embodiment, the product may be pressurized inside the container by a container having one or more deformable walls. In response to pressure exerted substantially perpendicularly to the external surface of the walls, the walls may deform elastically so as to reduce the volume of the container, and correspondingly to pressurize the product inside the container. When the pressure on the walls ceases, they may resume their initial shape.
In use, pressure may be exerted on the walls of the container with substantially the same intensity and for substantially the same duration. Different users might exert differing amounts of pressure on the walls for differing durations, thereby causing the dispensed dose to vary from one user to another. Each user might be capable of dispensing a dose which is substantially identical upon each use by maintaining the same conditions of exertion of the force on the walls of the container. This is because the variable component may be substantially identical from one use to another when the conditions of exercising of the fore are substantially identical.
If, during a particular use, the user needs to dispense a larger dose, for example, in the case of shampoo where the hair is particularly dirty, the user may modify the conditions of exertion of the force in order to modify the correspondingly dispensed volume.
The dispensed volume may be independent of the degree of emptying of the container. The variable volume chamber forms a buffer which may be filled substantially completely each time the piston returns from the second position to the first position, irrespective of the level of product remaining in the container.
Alternatively, the prod
Cartagena Melvin
L'Oreal (S.A.)
Yuen Henry C.
LandOfFree
Apparatus and method for dispensing a product does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Apparatus and method for dispensing a product, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus and method for dispensing a product will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2913432