Surgery – Diagnostic testing – Respiratory
Reexamination Certificate
2001-12-26
2003-09-16
Nasser, Robert L. (Department: 3736)
Surgery
Diagnostic testing
Respiratory
C073S023300, C422S084000, C340S573100
Reexamination Certificate
active
06620108
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates generally to apparatus and methods for determination of alcohol consumption in machinery operation, and in particular to a comparison technique for determination of the status of a machine operator with respect to a chemical.
2. Description of Related Art
The following art defines the present state of this field:
Heim, U.S. Pat. No. 4,090,078 describes a method for determining the alcohol content in the exhaling respiratory air using an alcohol measuring instrument and measuring the alcohol content when the exhaling air transmits the determined value of the alcohol concentration. This determined value of alcohol concentration occurs when the time variation related to the height of the alcohol signal is below a predetermined threshold value and the velocity of flow of the exhaling air is above a given value and is maintained without interruption for a given time. The apparatus includes an infrared measuring instrument which is connected into the respiratory air current and measures the alcohol concentration of the exhaling air. This value is applied to an indicator through a linear gate when an AND-gate is triggered by threshold comparators and a timing element activated by a threshold comparator.
Leichnitz, U.S. Pat. No. 4,277,251 describes a method of determining the alcohol content of air exhaled by a person using a flow through testing tube having an alcohol indicating material therein and a sampling tube to which the air is directed which has a material therein for retaining the alcohol of the breathing air and also using a suction pump comprises cooling the sampling tube, passing the exhaled air through the cooled sampling tube, measuring a volume of the air passing through the cooled sampling tube, heating the sampling tube and connecting the suction pump to the sampling tube to suck flushing air through the heated tube and then through the testing tube. The sampling tube advantageously contains a silica gel to retain the alcohol therein. The volume measuring device may be a measuring bag.
Hutson, U.S. Pat. No. 4,363,635 describes a method and apparatus for discriminating between alcohol and acetone in a breath sample and accurately measuring the alcohol level when acetone is present in the sample. The breath sample is measured with two different types of detectors and their outputs compared. One detector uses the principles of infrared (IR) absorption, the other detector is a semiconductor, commonly called a Taguci cell, or its equivalent. Automatic correction is provided for variation in sensitivity of the semiconductor.
Talbot, U.S. Pat. No. 4,649,027 describes a battery-operated portable breath tester. The breath tester includes a housing which defines a sleeve for receiving a wand. The wand defines an internal sample chamber, with a lamp at one end for providing infrared energy and a detector at an opposite end for receiving the infrared energy after it has passed through the sample to be tested. The wand defines opening extending from the internal sample chamber to the outside of the wand. The wand has an external shape providing a snug fit within the sleeve. As the wand is moved within the sleeve, gas is purged from the wand. The wand is connected to the housing by means of an electrical coil. The housing encloses a digital voltmeter including a digital display for providing a test readout. The digital voltmeter includes an oscillator which is coupled through a frequency divider and a transistor switch to the lamp. The lamp is switched on and off in accordance with the frequency output of the frequency divider to modulate the infrared energy emitted from the lamp at a selected frequency. A voltage regulator is connected to the lamp, and the lamp and voltage regulator are located in heat-exchange relationship with the sample chamber. This aids in raising the temperature of the sample chamber during testing in order to alleviate condensation.
Lopez, U.S. Pat. No. 4,749,553 describes a breath alcohol detector measuring and compensating for distance between the mouth of the individual exhaling breath into the ambient air and the detector, the atmospheric pressure, and the temperature. Blood alcohol content information is calculated using these compensation factors and a signal obtained from an electrochemical fuel cell which is indicative of the amount of alcohol or other gas contained in the sample. The detector also includes a reciprocally acting electromagnetically energized motor which drives a diaphragm pump to draw the sample into the electrochemical fuel cell.
Fukui, U.S. Pat. No. 4,849,180 describes an alcohol selective gas sensor including a detecting electrode and a semiconductor detecting element in contact with the detecting electrode, the semiconductor detecting element comprising tin oxide (SnO
2
) and a metal oxide of at least one of alkaline earth metals (Be, Mg, Ca, Sr, Ba) carried by the tin oxide, the metal oxide being contained in an amount of about 0.5 mol % or above.
O'Donnell et al., U.S. Pat. No. 4,905,498 describes a gaseous detection system for detecting the existence of a certain gas and further the detection of a certain level or percentage of that certain gas within a certain environment. An example is use of the gas detection system in a motor vehicle to aid in determining when a driver of the motor vehicle may be driving under the influence of alcohol, and for providing an appropriate warning signal that may be viewed from the exterior of the motor vehicle. The system includes a sensor unit for sensing ethanol in the atmospheric contents of the motor vehicle's interior, for example, a unit for providing an actuation signal in response to the sensing unit, and a signal unit that generates a signal which can be utilized for many purposes, for example, causing at least some of the exterior lights on the motor vehicle to alternately flash on and off in a substantially non-standard pattern. The sensing unit may also be coupled with a digital readout device or the like to indicate the amount of blood alcohol content of a person for evidentiary or like purposes.
Martin, U.S. Pat. No. 5,055,268 describes an air-borne chemical sensor system including a motor and impeller to draw an air sample into a housing containing a sensor which will provide a signal for display related to the amount of a particular air-borne chemical in a given air sample. The system is controllable by different duration activation of a single activating switch which can further control a secondary function, such as a flashlight.
Phillips, U.S. Pat. No. 5,220,919 describes a gaseous detection system for detecting the existence of a certain gas and further the detection of a certain level or percentage of that certain gas within a certain environment. An example is use of the gas detection system in a motor vehicle to aid in determining when a driver of the motor vehicle may be driving under the influence of alcohol, and for providing an appropriate warning signal that may be viewed from the exterior of the motor vehicle. The system includes a sensor unit for sensing ethanol in the atmospheric contents of the motor vehicle's interior, for example, a unit for providing an actuation signal in response to the sensing unit, and a signal unit that generates a signal which can be utilized for many purposes, for example, causing at least some of the exterior lights on the motor vehicle to alternately flash on and off in a substantially non-standard pattern. The sensing unit may also be coupled with a digital read-out device or the like to indicate the amount of blood alcohol content of a person for evidentiary or like purposes.
Forrester et al., U.S. Pat. No. 5,376,555 describes a method and infrared sensing device for determining the concentration of alveolar alcohol in a breath sample exhaled by a subject into an infrared sensing device. The presence of alcohol from the upper respiratory tract of the subject is detected by continuously monitoring alcohol and carbon dioxide, normalizing alc
Duval Landon
Williams Ronald Louis
Gene Scott-Patent Law & Venture Group
Nasser Robert L.
LandOfFree
Apparatus and method for determining machine operator status does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Apparatus and method for determining machine operator status, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus and method for determining machine operator status will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3050345