Apparatus and method for determining cardiac output in a...

Surgery – Diagnostic testing – Cardiovascular

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06602201

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to the field of biomedical analysis, and particularly to an apparatus and method for non-invasively determining the cardiac output in a living subject using impedance cardiography.
2. Description of Related Technology
Noninvasive estimates of cardiac output (CO) can be obtained using impedance cardiography. Strictly speaking, impedance cardiography, also known as thoracic bioimpedance or impedance plethysmography, is used to measure the stroke volume of the heart. As shown in Eqn. (1), when the stroke volume is multiplied by heart rate, cardiac output is obtained.
CO
=stroke volume×heart rate.  (1)
The heart rate is obtained from an electrocardiogram. The basic method of correlating thoracic, or chest cavity, impedance, Z
T
(t), with stroke volume was developed by Kubicek, et al. at the University of Minnesota for use by NASA. See, e.g., U.S. Reissue Pat. No. 30,101 entitled “Impedance plethysmograph” issued Sep. 25, 1979, which is incorporated herein by reference in its entirety. The method generally comprises modeling the thoracic impedance Z
T
(t) as a constant impedance, Z
o
, and time-varying impedance, &Dgr;Z (t), as illustrated schematically in FIG.
1
. The time-varying impedance is measured by way of an impedance waveform derived from electrodes placed on various locations of the subject's thorax; changes in the impedance over time can then be related to the change in fluidic volume (i.e., stroke volume), and ultimately cardiac output via Eqn. (1) above.
Despite their general utility, prior art impedance cardiography techniques such as those developed by Kubicek, et al. have suffered from certain disabilities. First, the distance (and orientation) between the terminals of the electrodes of the cardiography device which are placed on the skin of the subject is highly variable; this variability introduces error into the impedance measurements. Specifically, under the prior art approaches, individual electrodes
200
such as that shown in
FIGS. 2
a
and
2
b
, which typically include a button “snap” type connector
202
, compliant substrate 204, and gel electrolyte
206
are affixed to the skin of the subject at locations determined by the clinician. Since there is no direct physical coupling between the individual electrodes, their placement is somewhat arbitrary, both with respect to the subject and with respect to each other. Hence, two measurements of the same subject by the same clinician may produce different results, dependent at least in part on the clinician's choice of placement location for the electrodes. It has further been shown that with respect to impedance cardiography measurements, certain values of electrode spacing yield better results than other values.
Additionally, as the subject moves, contorts, and/or respirates during the measurement, the relative orientation and position of the individual electrodes may vary significantly. Electrodes utilizing a weak adhesive may also be displaced laterally to a different location on the skin through subject movement, tension on the electrical leads connected to the electrodes, or even incidental contact. This so-called “motion artifact” can also reflect itself as reduced accuracy of the cardiac output measurements obtained using the impedance cardiography device.
A second disability associated with prior art impedance cardiography techniques relates to the detection of a degraded electrical connection or loss of electrical continuity between the terminals of the electrode and the electrical leads used to connect thereto. Specifically, as the subject moves or sweats during the measurement, the electrolyte of the electrode may lose contact with the skin, and/or the electrical leads may become partially or completely disconnected from the terminals of the electrode. These conditions result at best in a degraded signal, and at worst in a measurement which is not representative of the actual physiological condition of the subject.
Another significant consideration in the use of electrodes as part of impedance cardiographic measurements is the downward or normal pressure applied to the subject in applying the electrode to the skin, and connecting the electrical leads to the electrode. It is desirable to minimize the amount of pressure needed to securely affix the electrode to the subject's skin (as well as engage the electrical lead to the electrode), especially in subjects whose skin has been compromised by way of surgery or other injury, since significant pressure can result in pain, and reopening of wounds.
It is also noted that it is highly desirable to integrate cardiac output measurement capability into a compact, rugged, and efficient platform which is readily compatible with different hardware and software environments. The prior art approach of having a plurality of different, discrete stand-alone monitors which include, for example, a dedicated, redundant display and/or other output or storage device is not optimal, since there is often a need to conserve space at the subject's bedside or even in their home (e.g., in outpatient situations), as well as cost efficiency concerns. Furthermore, a plurality of discrete stand-alone monitors necessarily consume more electrical power (often each having their own separate power supplies), and require the subject or clinician to remain proficient with a plurality of different user interface protocols for the respective monitors. In many cases, the individual stand-alone monitors are also proprietary, such that there is limited if any interface between them for sharing data. For example, where two such monitors require a common parametric measurement (e.g., ECG waveform or blood pressure), one monitor frequently cannot transmit this data to the other monitor due to the lack of interface, thereby necessitating repeating the measurement.
Recognizing these deficiencies, more recent approaches have involved the use of modular devices, wherein for example a common monitor/display function is utilized for a variety of different functional modules. These modules are generally physically mounted in a rack or other such arrangement, with the common monitor/display unit also being mounted therein. A common power supply is also generally provided, thereby eliminating the redundancy and diversity previously described. However, heretofore, impedance cardiography (ICG) equipment has not been made in such modular fashion, nor otherwise compatible with other modular devices (such as blood pressure monitoring or ECG equipment), such that such other signals can be obtained directly or indirectly from these devices and utilized within the ICG apparatus. The quality or continuity of these signals, whether obtained directly from the subject being monitored or from other modules, has not been readily and reliably provided for either.
Typical patient monitors include modules for several physiologic measurements such as ECG, blood pressure, temperature, and arterial pulse oximetry. The addition of ICG provides the physician with additional useful clinical information about the patient.
Furthermore, prior art ICG devices (modular or otherwise) do not provide the facility for direct transmission of the data obtained from the subject, or other parameters generated by the ICG device after processing the input data, to a remote location for analysis or storage. Rather, the prior art approaches are localized to the bedside or monitoring location. This is a distinct disability with respect to the aforementioned outpatient applications, since the subject being monitored must either manually relay the information to the caregiver (such as by telephone, mail, or visit), or perform the analysis or interpretation themselves. Additionally, it is often desirable to perform more sophisticated (e.g. algorithmic) comparative or trend analysis of the subject's data, either with respect to prior data for that same subject, or data for other subjects. The lack of effect

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus and method for determining cardiac output in a... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus and method for determining cardiac output in a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus and method for determining cardiac output in a... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3097365

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.