Apparatus and method for detecting and identifying...

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving antigen-antibody binding – specific binding protein...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S006120, C435S007900, C435S288700, C435S808000, C435S973000, C435S975000, C436S164000, C436S122000, C436S518000, C436S524000, C436S527000, C436S532000, C436S805000, C422S051000, C422S051000, C422S068100, C422S082050, C422S082080, C356S215000, C356S222000, C356S317000

Reexamination Certificate

active

06649356

ABSTRACT:

FIELD OF INVENTION
The present invention relates to methods for the identification of an analyte in a biological medium using bioluminescence. More particularly, a method is provided for diagnosing diseases employing a solid phase methodology and a luciferase-luciferin bioluminescence generating system. Methods employing biomineralization for depositing silicon on a matrix support are also provided herein.
BACKGROUND OF THE INVENTION
Bioluminescence
Luminescence is a phenomenon in which energy is specifically channeled to a molecule to produce an excited state. Return to a lower energy state is accompanied by release of a photon (h&ggr;). Luminescence includes fluorescence, phosphorescence, chemiluminescence and bioluminescence. Bioluminescence is the process by which living organisms emit light that is visible to other organisms. Luminescence may be represented as follows:
A+B→X*+Y
X*→X+hv,
where X* is an electronically excited molecule and h&ggr; represents light emission upon return of X* to a lower energy state. Where the luminescence is bioluminescence, creation of the excited state derives from an enzyme catalyzed reaction. The color of the emitted light in a bioluminescent (or chemiluminescent or other luminescent) reaction is characteristic of the excited molecule, and is independent from its source of excitation and temperature.
An essential condition for bioluminescence is the use of molecular oxygen, either bound or free in the presence of a luciferase. Luciferases, are oxygenases, that act on a substrate, luciferin, in the presence of molecular oxygen and transform the substrate to an excited state. Upon return to a lower energy level, energy is released in the form of light [for reviews see, e.g., McElroy et al. (1966) in
Molecular Architecture in Cell Physiology
, Hayashi et al., eds., Prentice-Hall, Inc., Englewood Cliffs, N.J., pp. 63-80; Ward et al., Chapter 7 in
Chemi
-
and Bioluminescence
, Burr, ed., Marcel Dekker, Inc. NY, pp.321-358; Hastings, J. W. in (1995)
Cell Physiology:Source Book
, N. Sperelakis (ed.), Academic Press, pp 665-681;
Luminescence, Narcosis and Life in the Deep Sea
, Johnson, Vantage Press, NY, see, esp. pp. 50-56].
Though rare overall, bioluminescence is more common in marine organisms than in terrestrial organisms. Bioluminescence has developed from as many as thirty evolutionarily distinct origins and, thus, is manifested in a variety of ways so that the biochemical and physiological mechanisms responsible for bioluminescence in different organisms are distinct. Bioluminescent species span many genera and include microscopic organisms, such as bacteria [primarily marine bacteria including Vibrio species], fungi, algae and dinoflagellates, to marine organisms, including arthropods, mollusks, echinoderms, and chordates, and terrestrial organism including annelid worms and insects.
Bioluminescence, as well as other types of chemiluminescence, is used for quantitative determinations of specific substances in biology and medicine. For example, luciferase genes have been cloned and exploited as reporter genes in numerous assays, for many purposes. Since the different luciferase systems have different specific requirements, they may be used to detect and quantify a variety of substances. The majority of commercial bioluminescence applications are based on firefly [
Photinus pyralis
] luciferase. One of the first and still widely used assays involves the use of firefly luciferase to detect the presence of ATP. It is also used to detect and quantify other substrates or co-factors in the reaction. Any reaction that produces or utilizes NAD(H), NADP(H) or long chain aldehyde, either directly or indirectly, can be coupled to the light-emitting reaction of bacterial luciferase.
Another luciferase system that has been used commercially for analytical purposes is the Aequorin system. The purified jellyfish photoprotein, aequorin, is used to detect and quantify intracellular Ca
2+
and its changes under various experimental conditions. The Aequorin photoprotein is relatively small [~20 kDa], nontoxic, and can be injected into cells in quantities adequate to detect calcium over a large concentration range [3×10
−7
to 10
−4
M].
Because of their analytical utility, many luciferases and substrates have been studied and well-characterized and are commercially available [e.g., firefly luciferase is available from Sigma, St. Louis, Mo., and Boehringer Mannheim Biochemicals,Indianapolis, Ind.; recombinantly produced firefly luciferase and other reagents based on this gene or for use with this protein are available from Promega Corporation, Madison, Wis.; the aequorin photoprotein luciferase from jellyfish and luciferase from Renilla are commercially available from Sealite Sciences, Bogart, Ga.; coelenterazine, the naturally-occurring substrate for these luciferases, is available from Molecular Probes, Eugene, Oreg.]. These luciferases and related reagents are used as reagents for diagnostics, quality control, environmental testing and other such analyses.
Chips, Arrays and Microelectronics
Microelectronics, chip arrays and other solid phase spacially addressable arrays have been been developed for use in diagnostics and other applications. At present, methods for detection of positive results are inadequate or inconvenient. There exists a need for improved, particularly more rapid detection methods.
Therefore, it is an object herein to provide detection means and methods.
SUMMARY OF THE INVENTION
A method is provided for diagnosing diseases, particularly infectious diseases, using chip methodology and a luciferase-luciferin bioluminescence generating system. A chip device for practicing the methods is also provided herein. The chip includes an integrated photodetector that detects the photons emitted by the bioluminescence generating system. The method may be practiced with any suitable chip device, including self-addressable and non-self addressable formats, that is modified as described herein for detection of generated photons by the bioluminescence generating systems. The chip device provided herein is adaptable for use in an array format for the detection and identification of infectious agents in biological specimens.
To prepare the chip, a suitable matrix for chip production is selected, the chip is fabricated by suitably derivatizing the matrix for linkage of macromolecules, and including linkage of photodiodes, photomultipliers CCD (charge coupled device) or other suitable detector, for measuring light production; attaching an appropriate macromolecule, such as a biological molecule or anti-ligand, e.g., a receptor, such as an antibody, to the chip, preferably to an assigned location thereon. Photodiodes are presently among the preferred detectors, and specified herein. It is understood, however, that other suitable detectors may be substituted therefor.
In one embodiment, the chip is made using an integrated circuit with an array, such as an X-Y array, of photodetectors. The surface of circuit is treated to render it inert to conditions of the diagnostic assays for which the chip is intended, and is adapted, such as by derivatization for linking molecules, such as antibodies. A selected antibody or panel of antibodies, such as an antibody specific for particularly bacterial antigen, is affixed to the surface of the chip above each photodetector. After contacting the chip with a test sample, the chip is contacted a second antibody linked to a component of a bioluminescence generating system, such as a luciferase or luciferin, specific for the antigen. The remaining components of the bioluminescence generating reaction are added, and, if any of the antibodies linked to a component of a bioluminescence generating system are present on the chip, light will be generated and detected by the adjacent photodetector. The photodetector is operatively linked to a computer, which is programmed with information identifying the linked antibodies, r

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus and method for detecting and identifying... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus and method for detecting and identifying..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus and method for detecting and identifying... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3162320

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.