Apparatus and method for data and command input and having a...

Electricity: measuring and testing – Electrolyte properties – Using a battery testing device

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06825669

ABSTRACT:

FIELD OF THE INVENTION
Embodiments of the present invention generally relate to a power source charger and tester. More particularly, the present invention relates to an apparatus and method to charge and test a battery, wherein the apparatus includes an apparatus and method for data and command input and display in a battery charger and/or tester.
BACKGROUND OF THE INVENTION
Rechargeable batteries are an important source of clean portable power in a wide variety of electrical applications, including automobiles, boats and electric vehicles. Lead-acid batteries are one form of rechargeable battery that are commonly used to start engines, propel electric vehicles, and to act as a source of back-up power when an external supply of electricity is interrupted. While not particularly energy efficient, due to the weight of lead in comparison to other metals, the technology of lead-acid batteries is mature. As a result, the batteries are cheap, reliable, and readily produced and thus, continue to constitute a substantial portion of the rechargeable batteries being produced today.
The ability of lead-acid batteries to deliver large amounts of electrical power is well known, particularly when associated with the starting and powering of motor vehicles. Because the lead-acid batteries can be depleted of power overtime, such as when they are not in use over a period of time, or when a light in a car is left on for an extended period of time, they need to be recharged and tested. A number of battery testers and chargers have thus been developed to charge and test the lead-acid battery.
Most conventional battery charger/tester are equipped to provide multiple charging rates for charging different size batteries. The multiple charging rates are achieved by varying the charging voltage at the battery terminals, generally by changing the transformer primary/secondary winding ratio. An operator manually selects the rate at which the battery should be charged and also the duration of the charge cycle if the charger is equipped with a timer function.
Many defects found in lead-acid batteries and other types of batteries are the result of poor recharging control in conventional chargers. For example, an operator may undercharge or overcharge the battery at a very high rate resulting in the deterioration of the battery. Overcharging a battery wastes energy, reduces the life of the battery, and may permanently damage the battery. Additionally, conventional battery chargers can also include testers with the appropriate gauges in order to determine the current state of charge in a battery, how long and at what rate a particular battery should be charged, whether it is safe to charge the battery, and whether the battery is capable of accepting a charge.
Once the battery charger/tester is in operation, the operator must return to check the status of the battery to ensure that the battery is charging properly. Because conventional battery requires actual visual inspection of the gauges, the operator can waste valuable time and money to inspect all the batteries that are currently being charged instead of generating money by working on other projects.
During the charging period of the battery, temperature of the battery is an indicator as to how successfully the battery is accepting the charge. Different batteries accept the charge in a number of different ways. For example, some batteries heat up beyond a normal range. Anything beyond this normal range is an indication that the battery is not accepting the charge in an efficient manner.
Conventional battery charger/testers include an interface that can select a built-in menu, however, the interface is very limited. For example, the interface may include an up and down arrow with an enter key, where the user can make various selections from the menu. The user can not add additional information to the battery charger/tester that are not available on the menu.
There is a need for a battery charger/tester to include a temperature sensing device, which monitors the device throughout the entire processing charging and testing process. There is a further need to provide the collected temperature data back to the charger to enable it to adjust the charge/test rate of the battery based upon this data. There is still a further need for the battery charger/tester to have an interface that can input additional information, as desired by the user.
SUMMARY OF THE INVENTION
Embodiments of the present invention generally provide for wherein the apparatus includes and apparatus and method for data and command input and display in a battery charger and/or tester.
In one aspect of the invention, a device for at least one of charging and testing a battery can include a controller that controls the charging and/or testing operation, a processor that processes menu commands, a display that displays menu commands, and an alphanumeric keypad to input information. The display cam be a multi-line alphanumeric display and the alphanumeric keypad can be at least nine digit keys. The device further includes at least a pair of scroll keys that scroll through menu commands and the display can be a multi-line alphanumeric display and a plurality of on-off LED displays. Additionally, the display can be an LCD display and the alphanumeric keypad can be a touch sensitive membrane keypad.
In another aspect the invention, a device for at least one of charging and testing a battery can include a means for controlling the charging and/or testing operation, a means for processing menu commands, a means for displaying menu commands, and a means for inputting information. The displaying means may include a multi-line alphanumeric display and the means for inputting may be an alphanumeric keypad. The device can further include at least a pair of scroll keys that scroll through menu commands. Additionally, the displaying means may include a multi-line alphanumeric display and a plurality of on-off LED displays. The displaying means can also include an LCD display. The means for inputting can include a touch sensitive membrane keypad.
In still another aspect of the invention, which provides a method for at least one of charging and testing a battery which can include the steps of inputting the information via an alphanumeric keypad into a battery charger, processing the inputted information, displaying menu commands, and selecting menu commands to operate the charger. The displaying step can be performed by a multi-line alphanumeric display and the selecting step can be performed by operating an at least nine digit keys. Additionally, the selecting step may be performed by at least a pair of scroll keys that scroll through menu commands and the displaying step can be performed by a multi-line alphanumeric display and a plurality of on-off LED displays. The displaying step may be performed by an LCD display and the inputting step may be performed by operating an at least nine digit alphanumeric keypad.
There has thus been outlined, rather broadly, the more important features of the invention in order that the detailed description thereof that follows may be better understood, and in order that the present contribution to the art may be better appreciated. There are, of course, additional features of the invention that will be described below and which will form the subject matter of the claims appended hereto.
In this respect, before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not limited in its application to the details of construction and to the arrangements of the components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced and carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein, as well as the abstract, are for the purpose of description and should not be regarded as limiting.
As such, those skilled in the art will appreciate that the conception upon which this disclosure is based ma

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus and method for data and command input and having a... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus and method for data and command input and having a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus and method for data and command input and having a... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3351268

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.