Power plants – Motive fluid energized by externally applied heat – Having apparatus cleaning – sealing – lubricating – purging,...
Reexamination Certificate
1998-01-30
2001-06-19
Nguyen, Hoang (Department: 3745)
Power plants
Motive fluid energized by externally applied heat
Having apparatus cleaning, sealing, lubricating, purging,...
C417S313000, C417S364000
Reexamination Certificate
active
06247314
ABSTRACT:
BACKGROUND
The invention generally relates to oil-flooded fluid compressors, and more particularly to an apparatus and method for continuously disposing of liquid condensate in an oil-flooded fluid compressor driven by a prime mover having an exhaust system, and wherein liquid mixed with the compressed fluid is separated from the compressed fluid by at least one liquid separating means, the at least one liquid separating means is continuously purged by compressed system pressure and as a result, the liquid condensate is continuously flowed to the exhaust system, is vaporized by the hot exhaust fluid, and is entrained in the discharged exhaust fluid stream.
During operation of a conventional oil-flooded fluid compressor, oil is injected into the compressor's compression module to reduce the temperature of the hot, compressed fluid, which is typically air. The injected oil and other liquids that are entrained with the compressed fluid must be separated from the compressed fluid before the compressed fluid is supplied to an object of interest such as a pneumatic tool.
Typical fluid compressor systems include an oil-flooded compressor, an aftercooler and an afterfiltration or separation device. The aftercooler and afterfiltration devices are most typically used to respectively reduce the temperature of the compressed fluid, and to separate the liquids from the compressed fluid. The liquid collected during the aftercooling and afterfiltering is flowed from the compressed fluid system to a drum or other suitable holding vessel and is collected in the vessel. The liquid collected in the vessel must then be disposed of from time to time. The collected liquid is frequently considered a hazardous material, which may only be disposed of after either complying with a required disposal procedure or chemically treating the liquid in some manner. As a result, disposal of the separated liquid using such a traditional collection and disposal method is typically quite burdensome and expensive.
One prior art fluid compression system described in U.S. Pat. No. 5,287,916 attempts to overcome the shortcomings associated with traditional collection and disposal methods. Generally, in the '916 patent, the separated liquid is collected in a holding vessel, and periodically, upon reaching a predetermined liquid collection level, is injected by compression system pressure into the exhaust system of a compressor prime mover which causes the liquid to be converted to vapor and entrained in the prime mover exhaust fluid.
Although this system effectively overcomes the shortcomings of the traditional collection and disposal methods, this collection and disposal method also has associated shortcomings. When the system is operated in below freezing ambient temperatures the liquid in the holding vessel can freeze and as a result, each holding vessel must include a heater at an additional cost, to prevent liquid freezing which may damage the holding vessel. In addition to this shortcoming, the apparatus for collecting and injecting the separated liquid from the holding vessel to the exhaust system can be expensive and the mechanism can be unreliable. When the injection apparatus is not functioning properly, the compressed fluid delivered to an object of interest will include an undesirable volume of liquid. A third shortcoming of the system disclosed in the '916 patent is that if there are two or more holding vessels associated with the aftercooler/after filtration devices, each with a condensate drain, each at slightly different pressures due to compressed fluid system component pressure drop, in order for the holding vessels to function properly, it is necessary for the system to include either a separate collection/injection device for each condensate drain, or a series of check valves and timed solenoids to sequentially purge each holding vessel. Such an arrangement significantly increases the system cost, complexity and reliability. Associated with this third shortcoming is the inability of the prior system to be purged automatically. Upon shutdown of the system, the collection/injection devices(s) must be purged of any remaining liquid, either manually or with a solenoid type device, to prevent damage in freezing environments. If the compressor operator forgets to purge the collection system and flow lines, the liquid can freeze in the device(s) and cause significant damage.
The foregoing illustrates limitations known to exist in present devices and methods. Thus, it is apparent that it would be advantageous to provide a condensate disposal system to dispose of the liquid condensate which is continuous, automatic, reliable, and minimizes the possibility of condensate disposal system failure during cold (below freezing) operation. Accordingly, a suitable alternative is provided including features more fully disclosed hereinafter.
SUMMARY OF THE INVENTION
In one aspect of the present invention, this is accomplished by providing an apparatus and method for continuously disposing of condensate in a fluid compressor system with a system pressure, a compressor for delivering a compressed fluid end and a second exhaust pipe end; a main separator in fluid communication with the compressor for receiving the compressed fluid and substantially separating the liquid entrained therein from the compressed fluid, the main separator including an outlet for discharging the compressed fluid after substantially all of the liquid has been removed therefrom; at least one continuous liquid separator for receiving the fluid discharged from the main separator, separating any of the volume of liquid remaining in the compressed fluid and continuously disposing of the volume of liquid through a liquid conduit; the liquid conduit flow connecting the at least one continuous liquid separator to the exhaust pipe between the first and second exhaust pipe ends, the at least one liquid conduit providing a flow path for the separated liquid as the at least one continuous liquid separator is continuously purged by the system pressure.
In operation, the separated liquid is conveyed continuously by system pressure from the respective at least one separating means, through the respective continuous flow orifice drain through the respective conduit and is introduced into the exhaust fluid stream. The exhaust fluid which is at a temperature that is higher than the temperature of the separated liquid vaporizes the separated liquid which is entrained with the exhaust fluid and discharged. Upon compressor shutdown, the separating means and conduits are automatically purged by the compressed fluid pressure, thereby preventing damage to the conduits and separating means due to liquid freezing.
The foregoing and other aspects will become apparent from the following detailed description of the invention when considered in conjunction with the accompanying drawing figures.
REFERENCES:
patent: 2017408 (1935-10-01), Hasche
patent: 4112968 (1978-09-01), Hoffman et al.
patent: 4602680 (1986-07-01), Bradford
patent: 4779640 (1988-10-01), Cummings et al.
patent: 4838343 (1989-06-01), Bogue
patent: 5056601 (1991-10-01), Grimmer
patent: 5096389 (1992-03-01), Grady
patent: 5145000 (1992-09-01), Kluppel
patent: 5240386 (1993-08-01), Amin et al.
patent: 5287916 (1994-02-01), Miller
patent: 2 268 211 (1975-04-01), None
Ingersoll-Rand Company
Nguyen Hoang
LandOfFree
Apparatus and method for continuously disposing of... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Apparatus and method for continuously disposing of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus and method for continuously disposing of... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2434825