Adhesive bonding and miscellaneous chemical manufacture – Surface bonding means and/or assembly means therefor – Automatic and/or material-triggered control
Reexamination Certificate
1998-07-28
2001-01-30
Crispino, Richard (Department: 1734)
Adhesive bonding and miscellaneous chemical manufacture
Surface bonding means and/or assembly means therefor
Automatic and/or material-triggered control
C156S361000, C156S362000, C156S363000, C156S542000
Reexamination Certificate
active
06179030
ABSTRACT:
TECHNICAL FIELD
This invention relates to automated labelling machines and the like. More particularly, this invention relates to improved labelling machines capable of controllably printing label information onto labels and delivering such printed labels onto rows of tray supported articles such as fruits and vegetables.
BACKGROUND OF THE INVENTION
One previously known technique for applying labels to articles is to utilize a hand-held label machine, or labeller, which is operable by a user to hand apply labels to individual articles needing identification. Several such hand-held labellers are presently commercially available. One such hand-held labeller is disclosed in U.S. Pat. No. 5,015,324 to Goodwin, et al. This labeller has a thermal print head for custom printing of information onto labels. Labels are then individually hand applied to articles by an operator. However, one problem with such hand-held labellers results from the fact that an operator is required to hand apply the labels to individual articles. Another problem is caused by the fact that an operator is unable to apply labels at a fast enough rate to process a large number of articles when the articles are being sorted and delivered via an automated storing, stacking and delivering operation. For example, different grades and sizes of fruits or vegetables need to be labelled during a sorting and/or packing operation, which requires the ability to apply a large number of labels in a relatively fast manner.
Another previously known technique for applying labels to articles uses an automated labelling machine such as that disclosed in U.S. Pat. No. 4,194,941 to Briggs, et al. According to such a device, a mechanism is presented for automatically labelling articles by delivering the articles through a delivery chute where they are guided into contact with an upstanding label. As each article engages with the label, the label is transferred to the article, which causes movement of a new label into a transfer position. The new label is then positioned to be delivered to a subsequent article that is delivered into contact with the upstanding new label. However, such labelling machines require that the articles be delivered down a chute. Therefore, labels can only be applied to articles prior to sorting and stacking the articles.
Yet another previously known technique for applying labels to articles uses a delivery line or conveyor that transports individual produce articles within cups. A line of such cups carries articles for delivery past individual stations. Each station contains a solenoid that causes the cup to tip and eject such carried produce article when a specific characteristic of the article has been detected. One characteristic comprises article size. For example, a camera and imaging computer/software can be used to optically detect and estimate the image size for apples supported in individual cups. Other characteristics comprise color, shape and grade. Several stations can be dedicated for separating variously sized articles, or apples, a solenoid at each station being triggered to tip a cup based upon the detected size of an article passing thereby. Such article is dropped via tipping of the conveying cup, with such article being dropped to a chute where similarly sized articles are directed to a conveyor having trays where the articles are loaded thereon. However, labels are applied to the apples prior to dropping the sorted apples which can lead to loosening or dislodgement of labels from the apples. Furthermore, labelling of such articles while within cups is limited to the speed with which labels can be practically applied to the articles upstream of the sorting location. Presently, such label application speeds are limited by the speed with which present label applicators can operate. Hence, such produce article sizer machines have operating speeds that are limited to the speed with which labels can be applied to the cup supported articles.
One problem caused by labelling articles prior to sorting and stacking such articles into trays results from the specific process used to sort and stack articles. For the case where apples, or produce, are being sorted and stacked via a sorting machine, the apples are delivered down a conveyor line and/or a chute where labels are applied to individual apples. A sizer then sorts the labelled apples and delivers them onto a large number of conveyors, each dedicated to a specific apple size. In one case, a sizer receives an input stream of apples on single delivery chute and outputs 32 different-sized apples to 32 separate conveyors. Accordingly, the use of a labelling machine as taught in Briggs, et al. (U.S. Pat. No. 4,194,941) greatly limits the speed with which a sizer can operate since labelling machines such as that taught in Briggs generally can only run at a maximum of 500-600 labels per minute. At greater speeds, the labels are not adhered sufficiently to the apples so as to be able to withstand contact pressures and rubbing that occur within a sizer. Additionally, there is a physical limit to the speed with which labels can be applied according to the apparatus of Briggs as well as other prior art devices. Furthermore, the labelling of produce upstream of a sorting/sizing station results in the labelling of spoiled or bad produce that will end up being separated from desirable produce by the sorter/sizer. Hence, additional labels are used, which leads to waste. Therefore, there exists a need for an apparatus capable of applying labels to apples downstream of a sizer, at the drop, wherein the articles are already positioned within rows in a tray, and where spoiled or bad articles have already been separate out.
Utilization of prior art devices such as Briggs, et al. (U.S. Pat. No. 4,194,941) will not work well with many existing high-speed packing houses wherein sorting and stacking lines are contained therein. The articles are labelled during a delivery process prior to sorting and stacking, which often leads to labels being damaged or inadvertently removed during subsequent sorting or stacking. Removed labels present a problem because the articles can no longer be identified and the labels, which come off during transport of the articles, can reattach themselves to components of the processing machine, which can gum up or restrict operation of the machine. Therefore, there is a need to apply labels downstream of a delivering and sorting operation, or sizer, such that the labels are less susceptible of being inadvertently removed during transport of the articles. Furthermore, there exists a need to apply labels downstream of a sizer such that the operating speed of a sizer can be increased.
Yet another previously known technique for labelling articles is disclosed in U.S. Pat. No. 5,387,302 to Bernard, et al. According to such apparatus and method, labels are automatically applied to individual produce articles such as fruit or vegetables. Such articles are first sorted into trays having parallel rows or indentations sized to receive articles being labelled. The articles are disposed for storage and delivery into trays in single-file lines, and the trays and stored articles are delivered via a continuously moving conveyor, downstream of a sizer or sorting machine. The rows are disposed during delivery perpendicular to the advance direction of the conveyor.
According to the apparatus taught in Bernard, et al. (U.S. Pat. No. 5,387,302), at least one labelling head is moved over a row of indentations with composite rectilinear translation motion. Such motion results from a combination of longitudinal advance motion corresponding to the motion of the conveyor in combination with a transfer motion perpendicular to the conveyor such that a label is placed successively on each article in a row. Such operation is renewed for each of the rows of a tray being labelled. However, such labelling cannot be implemented downstream of the drop, where articles are loaded into trays for later stacking and loading into crates or boxes, due to the number of articles and
Automated Systems Technology, L.L.C.
Crispino Richard
Koch, III George R.
Wells, St. John, Roberts Gregory & Matkin P.S.
LandOfFree
Apparatus and method for configuring, locating, and applying... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Apparatus and method for configuring, locating, and applying..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus and method for configuring, locating, and applying... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2519085