Data processing: vehicles – navigation – and relative location – Vehicle control – guidance – operation – or indication – With indicator or control of power plant
Reexamination Certificate
2001-02-16
2003-03-25
Dolinar, Andrew M. (Department: 3747)
Data processing: vehicles, navigation, and relative location
Vehicle control, guidance, operation, or indication
With indicator or control of power plant
C701S115000
Reexamination Certificate
active
06539299
ABSTRACT:
FIELD OF THE INVENTION
The present disclosure is directed to providing an apparatus and a method to calibrate the operation of an engine. In particular, this disclosure is directed to enabling the operator to calibrate the engine operation, either while the engine is not running or while operating in its intended environment, by changing trim control values, which represent modifications to base engine control values that are based on an engine control map. More particularly, this disclosure is directed to enabling a recreational vehicle rider to generate trim control maps for calibrating base engine control maps, e.g., such as for ignition timing and fuel delivery, while riding or driving the vehicle.
It is believed that the performance of an internal combustion engine is dependent on a number of factors including the operating cycle (e.g., two-stroke, four-stroke, Otto, diesel, or Wankel), the number and design of combustion chambers, the selection and control of ignition and fuel delivery systems, and the ambient conditions in which the engine operates.
Examples of design choices for a combustion chamber are believed to include choosing a compression ratio and choosing the numbers of intake and exhaust valves associated with each chamber. In general, it is believed that these choices cannot be changed so as to calibrate engine operation after the engine has been built.
With regard to ignition systems, breaker point systems and electronic ignition systems are known. It is believed that these known systems provide spark timing based on an operating characteristic of the engine, e.g., speed of rotation and load. In the case of breaker point systems, it is believed that engine speed is frequently detected mechanically using centrifugally displaced weights, and that intake manifold vacuum is commonly used to detect engine load. In the case of electronic ignition systems, it is believed that engine speed is generally detected with an angular motion sensor associated with rotation of the crankshaft, and that engine load is frequently detected, for example, by the output of a throttle position sensor. In each case, spark timing is believed to be fixed according to these known systems for a given operating state of the engine.
With regard to fuel delivery systems, carburetors and fuel injection systems are known. It is believed that these known systems supply a quantity of fuel, e.g., gasoline, that is based on the amount of air being admitted to the engine, i.e., in accordance with the position of the throttle as set by the operator. In the case of carburetors, it is believed that fuel is delivered by a system of orifices, known as “jets.” As examples of carburetor operation, it is believed that an idle jet may supply fuel downstream of the throttle valve at engine idling speeds, and that fuel delivery may be boosted by an accelerator pump to facilitate rapid increases in engine speed. It is believed that most carburetors must be disassembled and different size jets or pumps installed to modify the amount of fuel delivery. However, this is a laborious process that, it is believed, that most often, can only be done while the engine is not running.
It is believed that known fuel injection systems, which can be operated electronically, spray a precisely metered amount of fuel into the intake system or directly into the combustion cylinder. The fuel quantity is believed to be determined by a controller based on the state of the engine and a data table known as a “map” or “look-up table.” It is believed that the map includes a collection of possible values or “setpoints” for each of at least one independent variable (i.e., a characteristic of the state of the engine), which can be measured by a sensor connected to the controller, and a collection of corresponding control values, for a dependent variable control function, e.g., fuel quantity.
Conventionally, it is believed that maps are developed by the engine manufacturer and permanently set in an engine control unit at the factory. Currently, for on-road vehicles, this is believed to be legally required in order to meet emissions regulations. However, it is believed that even when it is not legally required, the manufacturers prevent engine operators from modifying the maps for a variety of reasons such as the manufacturers believe that their maps provide the best engine performance, the manufacturers are afraid that an engine operator might damage the engine by specifying inappropriate control values, or the manufacturers assume that an engine operator might not have sufficient skill to properly modify a map. However, it is believed that the manufacturers have “optimized” their maps to perform best under a set of conditions that they specify. In most cases, it is believed that these conditions do not match the conditions in which the engine is operated. Consequently, stock maps are believed to limit, rather than optimize, an engine's performance.
It is further believed that ambient conditions such as air temperature, altitude, and barometric pressure affect engine performance. It is believed that these conditions generally impact the entire operating range of the engine. In the case of fuel injection, it is believed to be known to compensation for these conditions by calculating an adjustment for every operating state of the engine.
Thus, engine performance is believed to be substantially dependent on how combustion is accomplished in the ambient conditions. The stoichiometric ratio of air to gasoline is 14.7:1. However, it is believed that ratios from about 10:1 to about 20:1 will combust, and that it is often desirable to adjust the air-fuel ratio to achieve specific engine performance (e.g., a certain level of power output, better fuel economy, or reduced emissions). Similarly, it is also believed to be desirable to adjust ignition timing, commonly measured in degrees of crank rotation before a piston reaches top-dead-center of the compression stroke, to achieve specific engine performance (e.g., lowest fuel consumption or reduced emissions).
It is believed to be a disadvantage of known ignition timing systems and fuel delivery systems that engine operation is constrained by the fixed controls established by the suppliers of these systems. It is also believed to be a disadvantage that any possible adjustments to these known systems requires a technician to reconfigure one or more of the system components, or to disassemble the system, install substitute components, and reassemble the system. Therefore, it is further believed to be a disadvantage of these known systems that neither the effectiveness nor the sufficiency of these adjustments can be determined while continuously operating the engine in its intended environment. And it is yet further believed to be a disadvantage of these known systems that the effect of these adjustments cannot be directly compared.
There is believed to be a need to overcome these disadvantages of known ignition and fuel delivery systems.
SUMMARY OF THE INVENTION
The present invention provides a control apparatus for an internal combustion engine that allows an operator to calibrate engine performance relative to an engine operating characteristic. The control apparatus comprises a base engine control map that correlates values of the characteristic with values of a base engine control, a trim control map that correlates the values of the characteristic with values of a trim control, an engine control unit that obtains from the base engine control and trim control maps the respective base engine control and trim control values that are based on the characteristic value, and a panel that is operatively coupled with the engine control unit and includes a first switch regulating a trim signal supplied to the engine control unit. The trim control map is separated from the base control map. The engine control unit calculates an engine operating control value based on the obtained values. The calculated engine operating control value is supplied to the internal combustion engine to vary the engine perf
Chatfield Glen F.
Houston Roy D.
McDowell Philip D.
Anchell Scott
Dolinar Andrew M.
James Richard W.
Optimum Power Technology
LandOfFree
Apparatus and method for calibrating an engine management... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Apparatus and method for calibrating an engine management..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus and method for calibrating an engine management... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3076104