Apparatus and method for airbag inflation gas distribution

Land vehicles – Wheeled – Attachment

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C280S740000, C280S742000, C280S743100

Reexamination Certificate

active

06755436

ABSTRACT:

BACKGROUND OF THE INVENTION
1. The Field of the Invention
The present invention relates to vehicular safety. More specifically, the present invention relates to a novel apparatus and method for distributing inflation gases in a cushion for an inflatable curtain module.
2. The Relevant Technology
The inclusion of inflatable safety restraint devices, or airbags, is now a legal requirement for many new vehicles. Airbags are typically installed in the steering wheel and in the dashboard on the passenger side of a car. In the event of an accident, an accelerometer within the vehicle measures the abnormal deceleration and triggers the ignition of an explosive charge. Expanding gases from the charge fill the airbags, which immediately inflate in front of the driver and passenger to protect them from impact against the windshield. Side impact airbags, known as inflatable curtains, have also been developed in response to the need for similar protection from impacts in a lateral direction, or against the side of the vehicle.
However, despite their enormous lifesaving potential, the effectiveness of side impact airbags has been somewhat limited by the speed with which inflation gases are able to fill the cushion. Side impact cushions are often designed to unfold or unroll downward to inflate beside a person to keep the person from hitting the door or window during lateral impact. Since a vehicle occupant may be leaning forward, reclined in the seat, or at any position between, such cushions are often made somewhat long to ensure that the occupant hits the cushion.
Cushions for inflatable curtains are often inflated by an inflator positioned either fore or aft of the cushion. Consequently, unlike many front impact airbags, a long gas flow path exists between the inflator and the outermost extent of the cushion. The length of the gas flow path is problematic for a number of reasons.
One such reason is that the cushions are unable to inflate rapidly enough to provide optimal protection. Since most airbag systems are unable to detect a collision until impact has begun to occur, the airbag must move from an uninflated, stowed configuration to a fully inflated configuration within a small fraction of a second. The long flow path increases the time required by the inflation gases to traverse the cushion. Thus, the cushion may not obtain a fully inflated state before the vehicle occupant strikes the cushion.
In an attempt to compensate for the longer gas flow path, inflators with a higher “rise rate,” or rate of pressure increase of expelled gases, and a higher volume of expelled gases, have been used. Unfortunately, when the inflation gases are more highly pressurized, there is a higher danger of damage to the cushion. Highly-pressurized gases produce stresses in the material of the cushion that may tend to rip the cushion material or split the cushion open along the seams, thereby jeopardizing the effectiveness of the cushion.
Furthermore, even when the inflator produces a larger amount of gas, the inflation gas may expand in the portion of the cushion nearest to the inflator, rather than continuing toward the furthest extents of the cushion. As a result, the cushion may not be uniformly inflated in time to shield occupants properly from impact.
Existing airbag configurations developed in an attempt to solve this problem also have some drawbacks. Some are difficult and/or expensive to manufacture, in part due to additional drilling, punching, aligning, fixturing and the like that must be carried out. Some increase the expense of airbag installation because they have parts that must be inserted into a finished cushion prior to installation of the cushion in a vehicle. Others require additional time to reach a steady state after inflation due to backflow and other continued motion of inflation gases within the cushion.
Accordingly, a need exists for an apparatus and method for distributing inflation gases in an inflatable cushion in a comparatively uniform and rapid manner. A need further exists for such an apparatus and method that can be carried out with a minimum of added expense to the manufacture and installation of the cushion. Furthermore, a need exists for such an apparatus and method that is capable of stabilizing the location of inflation gases when the cushion has been fully inflated.
BRIEF SUMMARY OF THE INVENTION
The apparatus and method of the present invention have been developed in response to the present state of the art, and in particular, in response to the problems and needs in the art that have not yet been fully solved by currently available airbag component attachment systems and methods. Thus, it is an overall purpose of the present invention to provide an apparatus and method for distributing inflation gas within an airbag cushion with a high degree of inflation speed and uniformity, manufacturing and installation economy, and inflation stability
An inflatable curtain module according to the present invention may have an inflatable cushion configured to activate to shield a vehicle occupant from impact against a lateral surface of the vehicle, such as a door or window. The cushion preferably has at least one protection zone, and may optionally have multiple protection zones, each of which may serve to protect one occupant. Thus, a single cushion may, for example, cover a rear door or surface as well as a front door, so that an occupant of a back seat can be protected as well as an occupant of a front seat. The protection zones may be connected by a connection zone configured to convey tension and inflation gas between the protection zones.
The cushion may have a first membrane and a second membrane, each of which has an interior portion and an outer edge substantially surrounding the interior portion. The first membrane may also have a mounting surface disposed within the interior portion of the first membrane, and running along a portion of the length of the interior portion. The first and second membranes may be attached at the outer edges such that the interior portions face each other to form the one or more protection zones of the cushion. Each protection zone may be divided into a number of chambers, which may, for example, be oriented substantially upright.
The membranes may be attached in a number of different ways, including sewing, RF welding, chemical or adhesive bonding, or the like. The chambers maybe separated from each other through the use of a similar method, or through the use of an entirely different attachment process.
An inflation channel may be disposed along a portion of the length of the cushion, and may be attached to the mounting surface of the first membrane such that the inflation channel is affixed within one or more protection zones of the cushion. The inflation channel may be coupled to receive inflation gas from an inflator by, for example, connecting a gas guide to the inflator and to the inflation channel. The inflation channel may have a plurality of holes disposed along its length, for distributing inflation gases throughout the cushion.
The inflation channel may have a conduit shaped to convey inflation gas. Additionally, the inflation channel may have a mounting flap configured to be affixed to the mounting surface of the first membrane. The inflation channel may operate to receive and dissipate the initial shock of the expanding, heated inflation gas, thereby preventing damage to the membranes of the cushion. Furthermore, the inflation channel may be designed such that inflation gases are able to freely exit the inflation channel through the holes, but are unable to re-enter as freely.
For example, a gas outlet extension may run along the length of the conduit; the gas outlet may have a substantially tapered shape with an enlarged end toward the conduit and a narrow end away from the conduit. The holes may be formed in the narrow end. Consequently, when the pressure within the conduit is greater than the pressure outside the conduit, the enlarged end remains open and in fluid communication with the conduit. However, when the pressu

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus and method for airbag inflation gas distribution does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus and method for airbag inflation gas distribution, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus and method for airbag inflation gas distribution will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3341958

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.