Machine element or mechanism – Gearing – Rotary bodies
Reexamination Certificate
2000-01-21
2001-09-25
Herrmann, Allan D. (Department: 3682)
Machine element or mechanism
Gearing
Rotary bodies
C074S397000, C074S409000
Reexamination Certificate
active
06293166
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates to gears, and more particularly, but not exclusively, relates to reduction of backlash in gear trains.
When the tooth of one gear mates with the gap of another gear, the gap typically provides more space than needed to accommodate the tooth. This excess space is sometimes called “lash” or “backlash.” Backlash may vary with a number of factors including radial play in the gear bearings, gear shaft eccentricity, incorrect center-to-center spacing of the gears, and the gear-to-gear variation typical of many gear manufacturing processes.
The extra space associated with backlash usually leads to significant impact loading of the gear teeth. This loading often causes excessive noise and may result in other gear train problems. For example, backlash may accelerate gear wear. Backlash reduction is of particular concern for internal combustion engine applications—especially for gear trains used with diesel engines. U.S. Pat. No. 5,450,112 to Baker et al., U.S. Pat. No. 4,920,828 to Kameda et al., U.S. Pat. No. 4,700,582 to Bessette, and U.S. Pat. No. 3,523,003 to Hambric are cited as sources of background information concerning the application of gear trains to various engines.
One way to reduce backlash is through precision machining and mounting of the gears. However, this approach is usually expensive and still may not adequately address backlash that changes over time due to wear. Another approach to reduce backlash has been the introduction of one or more scissor gears into the gear train. Generally, scissor gears have teeth which adjust in size to occupy the space available between teeth of a mating gear. U.S. Patent No. 5,056,613 to Porter et al., U.S. Pat. No. 4,747,321 to Hannel, U.S. Pat. No. 4,739,670 to Tomita et al., U.S. Pat. No. 3,365,973 to Henden, and U.S. Pat. No. 2,607,238 English et al. are cited as examples of various types of scissor gears.
Backlash accommodation with a scissor gear is often limited when the scissor gear is meshed with two or more gears having different amounts of lash. Typically, the mating gear having the smallest amount of lash dictates the effective tooth size of the scissor gear; however, this size is generally inadequate to take-up the greater lash of the other mating gear or gears. One potential solution to this problem is to select mating gears which minimize the lash difference, but this “lash matching” approach is typically expensive and time-consuming. Consequently, a need remains for a gear train assembly which accommodates lash differences resulting from multiple gears meshing with a scissor gear.
One scissor gear configuration has two toothed wheels spring-biased to rotate relative to each other about a common center. For this configuration, paired gear teeth, one from each wheel, spread to occupy the available space between teeth in a mating gear. In some gear trains, loading of the tooth pairs by the mating gear becomes high enough to align each tooth pair in opposition to the spring bias. Typically, each member of the aligned pair is configured to proportionally bear this high load by being sized with the same nominal thickness. However, it has been found that random deviations from nominal are usually enough to cause one tooth or the other of each pair to bear a disproportionately high amount of the load until it has deformed enough to match the other tooth. This deformation process often subjects the gear teeth to reverse bending loads that more quickly wear-out the teeth compared to teeth subjected to unidirectional bending loads. Also, such deformation may cause greater tooth-to-tooth variation, resulting in poorer performance and a more noisy gear train. Therefore, a need exists for an anti-lash gear assembly which accommodates high loading without these drawbacks.
It has also been discovered that the knocking of heavy duty diesel engines, often attributed to combustion processes, results, at least in part, from high impact gear tooth noise. Typically, this noise is not sufficiently abated by conventional scissor gear configurations. Thus, a gear train is also in demand which addresses this type of noise.
SUMMARY OF THE INVENTION
The present invention relates to anti-lash gear assemblies and gear trains utilizing one or more anti-lash gear assemblies. Various aspects of the invention are novel, nonobvious, and provide various advantages. While the actual nature of the invention covered herein can only be determined with reference to the claims appended hereto, certain forms of the invention that are characteristic of the preferred embodiments disclosed herein are described briefly as follows.
One form of the present invention is a gear train having a first gear forming a first mesh with a second gear and a second mesh with a third scissor gear. A mounting position of the first gear relative to the second and third gears is selected to maintain backlash of both the first and second meshes at or below a maximum acceptable level.
In an another form, an idler gear forms a first mesh with a first scissor gear to establish an effective tooth size of the first scissor gear. After the first mesh is established, the mounting position of the idler gear is selected. This mounting position is determined as a function of the effective tooth size to control backlash of a second mesh formed between the idler gear and a second scissor gear.
In a further form, an idler gear forms a first mesh with a first gear and a second mesh with a second gear. A mounting position of the idler gear relative to the first and second gears is selected to maintain backlash of both the first and second meshes at or below a maximum acceptable level. This mounting position may be selected by using a mechanism that constrains movement of the idler gear along a desired path and the first gear, second gear, or both may be of a scissor type configuration.
In an additional form of the present invention, a gear train assembly for an engine is provided which includes a first scissor gear rotatably coupled to the engine, the first scissor gear having a first rotational center; a second scissor gear rotatably coupled to the engine, the second scissor gear having a second rotational center; and an idler gear rotatably coupled to the engine to form a first mesh with the first scissor gear and a second mesh with the second scissor gear. The idler gear has a third rotational center and is mounted by a positioning mechanism having a guide member slidingly engaging a generally linear adjustment path, the idler gear being selectively positionable along the path to maintain a distance between the first and third rotational centers within a predetermined range corresponding to a generally minimized backlash for the first mesh, and to provide a correspondingly adjustable separation distance range between the second and third rotational centers to generally match backlash of the second mesh to the minimized backlash of the first mesh.
In yet another form of the present invention, a method of assembling a gear train includes: (a) mounting a first gear which defines a first rotational center; (b) mounting a second gear which defines a second rotational center; and (c) mounting a third gear defining a third rotational center to establish a first mesh of a generally minimized backlash with the first gear and a second mesh with the second gear, the third gear being adjustable about a generally linear adjustment path, the linear adjustment path having a predetermined relationship to a tangent formed by the first mesh, whereby the third gear is selectively positionable along the adjustment path to minimize a backlash of the second mesh while maintaining the generally minimized backlash of the first mesh.
In still another form of the present invention, a gear train assembly for an engine includes a first gear rotatably coupled to the engine, the first gear having a first rotational center; a second gear rotatably coupled to the engine, the second gear having a second rotational center; and an idler gear rotatably coupled to the engi
Genter David P.
Kelly Eudell L.
Kolhouse Robert W.
Stover Thomas R.
Voils Mark A.
Cummins Engine Company, Inc.
Herrmann Allan D.
Woodard Emhardt Naughton Moriarty & McNett
LandOfFree
Apparatus and method for adjusting a gear does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Apparatus and method for adjusting a gear, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus and method for adjusting a gear will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2544698