Surgery – Miscellaneous – Methods
Reexamination Certificate
2000-07-12
2004-10-19
Peffley, Michael (Department: 3739)
Surgery
Miscellaneous
Methods
C606S028000, C600S459000
Reexamination Certificate
active
06805128
ABSTRACT:
FIELD OF THE INVENTION
This invention relates generally to devices and methods for ablating tissue. The diagnosis and treatment of electrophysiological diseases of the heart, and more specifically to devices and methods for epicardial mapping and ablation for the treatment of atrial fibrillation, are described in connection with the devices and methods of the present invention.
BACKGROUND OF THE INVENTION
Atrial fibrillation results from disorganized electrical activity in the heart muscle, or myocardium. The surgical maze procedure has been developed for treating atrial fibrillation and involves the creation of a series of surgical incisions through the atrial myocardium in a preselected pattern so as to create conductive corridors of viable tissue bounded by scar tissue.
As an alternative to the surgical incisions used in the maze procedure, transmural ablation of the heart wall has been proposed. Such ablation may be performed either from within the chambers of the heart (endocardial ablation) using endovascular devices (e.g. catheters) introduced through arteries or veins, or from outside the heart (epicardial ablation) using devices introduced into the chest. Various ablation technologies have been proposed, including cryogenic, radiofrequency (RF), laser and microwave. The ablation devices are used to create elongated transmural lesions—that is, lesions extending through a sufficient thickness of the myocardium to block electrical conduction—which form the boundaries of the conductive corridors in the atrial myocardium. Perhaps most advantageous about the use of transmural ablation rather than surgical incisions is the ability to perform the procedure on the beating heart without the use of cardiopulmonary bypass.
In performing the maze procedure and its variants, whether using ablation or surgical incisions, it is generally considered most efficacious to include a transmural incision or lesion that isolates the pulmonary veins from the surrounding myocardium. The pulmonary veins connect the lungs to the left atrium of the heart, and join the left atrial wall on the posterior side of the heart. This location creates significant difficulties for endocardial ablation devices for several reasons. First, while many of the other lesions created in the maze procedure can be created from within the right atrium, the pulmonary venous lesions must be created in the left atrium, requiring either a separate arterial access point or a transeptal puncture from the right atrium. Second, the elongated and flexible endovascular ablation devices are difficult to manipulate into the complex geometries required for forming the pulmonary venous lesions and to maintain in such positions against the wall of the beating heart. This is very time-consuming and can result in lesions which do not completely encircle the pulmonary veins or which contain gaps and discontinuities. Third, visualization of endocardial anatomy and endovascular devices is often inadequate and knowing the precise position of such devices in the heart can be difficult, resulting in misplaced lesions. Fourth, ablation within the blood inside the heart can create thrombus which, in the right chambers, is generally filtered out by the lungs rather than entering the bloodstream. However, on the left side of the heart where the pulmonary venous lesions are formed, thrombus can be carried by the bloodstream into the coronary arteries or the vessels of the head and neck, potentially resulting in myocardial infarction, stroke or other neurologic sequelae. Finally, the heat generated by endocardial devices which flows outward through the myocardium cannot be precisely controlled and can damage extracardiac tissues such as the pericardium, the phrenic nerve and other structures.
What are needed, therefore, are devices and methods for forming lesions that isolate the pulmonary veins from the surrounding myocardium which overcome these problems. The devices and methods will preferably be utilized epicardially to avoid the need for access into the left chambers of the heart and to minimize the risk of producing thrombus.
Additional aspects of the present invention are directed to devices and methods for ablating tissue. Ablation of heart tissue and, specifically, ablation of tissue for treatment of atrial fibrillation is developed as a particular use of these other aspects of the present invention.
SUMMARY OF THE INVENTION
The present invention meets these and other objectives by providing epicardial ablation devices and methods useful for creating transmural lesions that electrically isolate the pulmonary veins for the treatment of atrial fibrillation.
In a first embodiment, a method of forming a transmural lesion in a wall of the heart adjacent to the pulmonary veins comprises the steps of placing at least one ablation device through a thoracic incision and through a pericardial penetration so that at least one ablation device is disposed in contact with an epicardial surface of the heart wall; positioning at least one ablation device adjacent to the pulmonary veins on a posterior aspect of the heart while leaving the pericardial reflections intact; and ablating the heart wall with at least one ablating device to create at least one transmural lesion adjacent to the pulmonary veins. While the method may be performed with the heart stopped and circulation supported with cardiopulmonary bypass, the method is preferably performed with the heart beating so as to minimize morbidity, mortality, complexity and cost.
In another aspect of the invention, an apparatus for forming a transmural lesion in the heart wall adjacent to the pulmonary veins comprises, in a preferred embodiment, an elongated flexible shaft having a working end and a control end; an ablation device attached to the working end for creating a transmural lesion in the heart wall; a control mechanism at the control end for manipulating the working end; and a locating device near the working end configured to engage one or more of the pulmonary veins, or a nearby anatomical structure such as a pericardial reflection, for positioning the working end adjacent to the pulmonary veins. The locating device may comprise a catch, branch, notch or other structure at the working end configured to engage one or more of the pulmonary veins or other anatomical structure such as the inferior vena cava, superior vena cava, aorta, pulmonary artery, left atrial appendage, right atrial appendage, or one of the pericardial reflections. The ablation device may be a radiofrequency electrode, microwave transmitter, cryogenic element, laser, ultrasonic transducer or any of the other known types of ablation devices suitable for forming transmural lesions. Preferably, the apparatus includes a plurality of such ablation devices arranged along the working end in a linear pattern suitable for forming a continuous, uninterrupted lesion around or on the pulmonary veins.
The working end may additionally include one or more movable elements that are manipulated from the control end and which may be moved into a desired position after the working end has been located near the pulmonary veins. Slidable, rotatable, articulated, pivotable, bendable, pre-shaped or steerable elements may be used. Additional ablation devices may be mounted to these movable elements to facilitate formation of transmural lesions. The movable elements may be deployed to positions around the pulmonary veins to create a continuous transmural lesion which electrically isolates the pulmonary veins from the surrounding myocardium.
In addition, a mechanism may be provided for urging all or part of the working end against the epicardium to ensure adequate contact with the ablation devices. This mechanism may be, for example, one or more suction holes in the working end through which suction may be applied to draw the working end against the epicardium, or an inflatable balloon mounted to the outer side of the working end such that, upon inflation, the balloon engages the inner wall of the pericardium and forces the working end against the e
Anderson Scott C.
Ciciarelli Timothy
Crowe John E.
Gallup David A.
Pless Benjamin
Epicor Medical, Inc.
Hoekendijk Jens E.
Peffley Michael
LandOfFree
Apparatus and method for ablating tissue does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Apparatus and method for ablating tissue, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus and method for ablating tissue will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3321959