Apparatus and method for a torque and fuel control system...

Prime-mover dynamo plants – Electric control – Engine control

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C180S065230

Reexamination Certificate

active

06307277

ABSTRACT:

TECHNICAL FIELD
The present invention is related to a method and apparatus for minimizing the torque oscillations in the driveline of a hybrid vehicle during accelerations and decelerations.
BACKGROUND OF THE INVENTION
Passenger comfort and fuel efficiency have set forth increasing demands on automotive vehicle designs. It is a primary goal of most vehicle designs to provide a more efficient vehicle without having to sacrifice passenger comfort and satisfaction.
Moreover, and as alternative vehicle propulsion systems are implemented, passenger comfort and fuel efficiency are sometimes in opposition to each other. This is particularly true in hybrid vehicle designs.
A Hybrid Vehicle is a vehicle that has two sources of propulsion. A hybrid electric vehicle (HEV) is a vehicle wherein one of the sources of propulsion is electric and the other source of propulsion may be derived from fuel cells or an internal combustion engine (ICE) that burns diesel, gasoline or any other source of fuel.
Generally, a hybrid vehicle utilizes either one or two drive trains wherein the internal combustion engine (ICE) provides torque to one of the drive trains and an electrical driving force is applied to either of both of the drive trains.
The torque characteristics produced by an internal combustion engine are significantly different than those produced by an electric motor. For example, an electric motor provides higher torques at lower rpms while an internal combustion engine develops lower torques at lower rpms.
Generally, a conventional automatic transmission, clutch-to-clutch auto transmission and or manual transmission is coupled to an internal combustion engine. The transmission is positioned in the drive train between the internal combustion engine and the driven wheels. The transmission includes a case containing an input shaft, an output shaft, and a plurality of meshing gears. Means are provided for connecting selected ones of the meshing gears between the input shaft and the output shaft to provide a desired speed reduction gear ratio therebetween. The meshing gears contained within the transmission case are of varying size so as to provide a plurality of such gear ratios. By appropriately shifting among these various gear ratios, acceleration and deceleration of the vehicle can be accomplished in a smooth and efficient manner.
However, the drivability of a hybrid vehicle is adversely affected due to the torque oscillations that occur when abrupt torque changes are encountered in the operation of the internal combustion engine and the transmission coupled to it. Such oscillations are encountered during shifting, launching end starting and stopping of the engine in order to conserve fuel.
Accordingly, and in order to meet the torque demand of the automobiles acceleration, a transmission having multiple gear ratios must be coupled to an internal combustion engine.
Additionally, and as the transmission of an internal combustion engine shifts through its gear cycle, the engine driveshaft is generally disengaged from the transmission through a clutch mechanism which allows for the shifting of the gears. Once the gear transfer is complete the driveshaft is reengaged to the transmission.
Thus, the opening and closing of a clutch mechanism causes the drive train of an internal combustion engine to have a series of torque transfers with a steep drop-off or gap in between each series of transfer.
This presents a particular problem in hybrid vehicles where both an internal combustion engine and an electrically driven engine provide a driving force to the vehicle. Moreover, and in order to improve fuel economy, the internal combustion engine is frequently shut off and restarted. This cycling on off of the engine will also create a series of torque transfers with a speed drop-off or gap.
In order to provide a highly efficient hybrid vehicle that utilizes a fuel efficient internal combustion engine, the torque oscillations caused by a direct coupled drive train must minimized.
In addition, hybrid vehicles also utilize a concept known as regenerative braking. Generally, regenerative braking is the conversion of the vehicle's kinetic energy into a source of electrical power. The vehicle's kinetic energy is converted from the moving vehicle, in response to a user request to slow or stop the vehicle. A generator is manipulated, and accordingly, produces electrical energy as it applies a stopping force to the vehicle's axle and/or drive train in response to a stopping request.
Therefore, and in accordance with regenerative braking, the kinetic energy is converted to electric energy, as the vehicle begins to slow down.
SUMMARY OF THE INVENTION
An object of the present invention is to make the fuel on-off-on transitions during a vehicle deceleration as transparent as possible to the occupant or driver.
In an exemplary embodiment, the hybrid deceleration control system makes the fuel on-off-on transitions as transparent as possible. The initial fuel-off transition is performed by ramping spark and cutting fuel (cylinder by cylinder) to balance smoothness and emissions. Once decelerating with fuel off, the engine is kept spinning by the reverse-freewheel torque converter, and the downshifts normally performed with the aid of the idle-air-control system are performed with the electric motor/generator. Finally, as a function of the gear, engine rpm, and deceleration rate, the transmission is dropped to neutral just before compression bobble becomes objectionable.
Another object of the present invention is to control the system that is implemented to enable smooth fuel-off decelerations and reaccelerations.
An object of the present invention is to provide a hybrid vehicle having a parallel propulsion system wherein one of the propulsion systems is an internal combustion engine coupled to an automatic transmission and the torque interruptions and or oscillations associated with such a configuration are anticipated and produced by controlling the blending of the two propulsion systems.
Another object of the present invention is to provide a secondary propulsion system that generates a source of energy in addition to providing a secondary driving force for the hybrid vehicle.
The present invention includes a hybrid-electric vehicle (HEV) that has an internal combustion engine connected to drive a multi-speed automatic transmission that can, if desired, include a torque converter.
Additionally, the HEV includes an electric machine having a rotor connected to the crankshaft of the engine and a stator and a controller for selectively controlling the electric machine to serve as an electric starter or as a generator for regenerative braking during vehicle drive so as to charge an associated battery pack. An engine (fuel, spark, etc.) and transmission controller is provided that is operative in response to vehicle braking and further is operative to respond to vehicle speeds in different ranges to improve fuel consumption characteristics of the vehicle.
The advantage of such drive arrangement is that fuel control can be provided that will entirely cut off fuel flow during vehicle decelerations and stops. Integration of electric motor mechanically connected to the crankshaft of the internal combustion engine allows the shut off of fuel and restart of the gas engine to be conducted virtually transparent to the driver.
The control of the gas engine and electric motor is according to routines that operate in conjunction with the usual operation of an engine driven automatic transmission system for driving the wheels of the vehicle. In such systems the engine is driven by an electric motor starter and fuel is applied during an engine startup mode. The transmission is placed in a drive mode and the vehicle is accelerated by depressing the accelerator pedal for supplying more fuel and air to the engine. When the vehicle is up to speed the torque converter lock-up clutch is applied in the transmission is, for example, in a forward speed selection position such that the vehicle cruises under the power of the gas

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus and method for a torque and fuel control system... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus and method for a torque and fuel control system..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus and method for a torque and fuel control system... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2558226

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.