Apparatus and method facilitating the implantation of artificial

Prosthesis (i.e. – artificial body members) – parts thereof – or ai – Arterial prosthesis – Stent structure

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

623 19, 623 20, 623 21, 623 22, A61F 232, A61F 234, A61F 236

Patent

active

060028599

ABSTRACT:
Apparatuses and methods are disclosed for determining an implant position for at least one artificial component in a joint and facilitating the implantation thereof. The apparatuses and methods include creating a joint model of a patient's joint into which an artificial component is to be implanted and creating a component model of the artificial component. The joint and artificial component models are used to stimulate movement in the patient's joint with the artificial component in a test position. The component model and the joint model are used to calculate a range of motion in the joint for at least one test position based on the simulated motion. An implant position, including angular orientation, in the patient's joint is determined based on a predetermined range of motion and the calculated range of motion. In a preferred embodiment, the implant position can be identified in the joint model and the joint model aligned with the joint by registering positional data from discrete points on the joint with the joint model. Such registration also allows for tracking of the joint during surgical procedures. A current preferred application of the invention is for determining the implant position and sizing of an acetabular cup and femoral implant for use in total hip replacement surgery.

REFERENCES:
patent: 4341220 (1982-07-01), Perry
patent: 4905148 (1990-02-01), Crawford
patent: 5007936 (1991-04-01), Woolson
patent: 5086401 (1992-02-01), Glassman et al.
patent: 5141512 (1992-08-01), Farmer et al.
patent: 5242455 (1993-09-01), Skeens et al.
patent: 5251127 (1993-10-01), Raab
patent: 5299288 (1994-03-01), Glassman et al.
patent: 5305203 (1994-04-01), Raab
patent: 5360446 (1994-11-01), Kennedy
patent: 5383454 (1995-01-01), Bucholz
patent: 5389101 (1995-02-01), Heilbrun et al.
patent: 5408409 (1995-04-01), Glassman et al.
patent: 5517990 (1996-05-01), Kalfas et al.
patent: 5682886 (1997-11-01), Delp et al.
patent: 5733338 (1998-03-01), Kampner
patent: 5880976 (1999-03-01), DiGioia, III et al.
A. M. DiGioia, M.D., D. A. Simon, B. Jaramaz, M. Blackwell, F. Morgan, R. V. O'Toole, B. Colgan, E. Kischell, HipNav: Pre-operative Planning and Intra-operative Navigational Guidance for Acetabular Implant Placement in Total Hip Replacement Surgery, Proceeding of Computer Assisted Orthopedic Surgery, Bern, Switzerland (1996).
Robert J. Krushell, M.D., Denis W. Burke, M.D. and William H. Harris, M.D., Range of Motion in Contemporary Total Hip Arthroplasty, pp. 97-101, The Journal of Arthroplasty, vol. 6, No. 2, Jun., 1991.
Robert J. Krushell, M.D., Dennis w. Burke, M.D. and William H. Harris, M.D., Elevated-rim Acetabular Components, pp. 1-6, The Journal of Arthroplasty, vol. 6, Oct., 1991.
George E. Lewinnek, M.D., Jack L. Lewis, Ph.D., Richard Tarr, M.S., Clinton L. Compere, M.D. and Jerald R. Zimmerman, B.S., Dislocations After Total Hip-Replacement Arthroplasties, pp. 217-220, vol. 60-A, No. 2, Mar., 1978, The Journal of Bone and Joint Surgery, Incorporated.
Harlan C. Amstutz, M.D., R.M. Lodwig, D. J. Schurman, M.D. and A. G. Hodgson, Range of Motion Studies for Total Hip Replacements, pp. 124-130, Clinical Orthopaedics and Related Research, #111, Sep., 1975.
T. K. Cobb, M.D., B. F. Morrey, M.D. and D. M. Ilstrup, M.S., The Elevated-Rim Acetabular Liner in Total Hip Arthroplasty: Relationship to Postoperative Dislocation, pp. 80-86, The Journal of Bone and Joint Surgery, 1996.
D. A. Simon, R. V. O'Toole, M. Blackwell, F. Morgan, A. M. DiGioia and T. Kanade, Accuracy Validation in Image-Guided Orthopaedic Surgery, 2.sup.nd Annual Symposium on Medical Robotics and Computer Assisted Surgery, Baltimore, MD, Nov. 4-7.sup.th, 1995.
David A. Simon, Martial Hebert and Takeo Kanade, Techniques for Fast and Accurate Intrasurgical Registration, Journal of Image Guided Surgery, 1:17-29 (1995.).
Donald E. McCollum, M.D. and William J. Gray, M.D., Dislocation After Total Hip Arthroplasty, pp. 159-170, Clinical Orthopaedics and Related Research, No. 261, Dec., 1990.
David A. Simon, Martial Hebert and Takeo Kanade, Real-time 3-D Pose Estimation Using a High-Speed Range Sensor, pp. 1-14, Carnegie Mellon University, Robotics Institute, Technical Report, CMU-RI-TR-93-24, Nov., 1993.
T. A. Maxian, T. D. Brown, D. R. Pedersen, J. J. Callaghan, Femoral Head Containment in Total Hip Arthroplasty: Standard vs. Exended Lip Liners, p. 420, 42.sup.nd Annual Meeting, Orthopaedic Research Society, Feb. 19-22, Atlanta, Georgia.
T. A. Maxian, T. D. Brown, D. R. Pederson and J. J. Callaghan, Finite Element Modeling of Dislocation Propensity in Total Hip Arthroplasty, p. 259-44, 42.sup.nd Annual Meeting, Orthopaedic Research Society, Feb. 19-22, 1996, Atlanta, Georgia.
Vincent Dessenne, Stephane Lavellee, Remi Julliard, Rachel Orti, Sandra Martelli, Philippe Cinquin, , Computer-Assisted Knee Anterior Cruciate Ligament Reconstruction: First Clinical Tests, Journal of Image Guided Surgery, 1:59-64 (1995).
Ali Hamadeh, Stephane Lavellee, Richard Szeliski, Philippe Cinquin, Olivier Peria, Anatomy-based Registration for Computer-integrated Surgery, pp. 212-218, Program of 1.sup.st International Conference on Computer Version Virtual Reality "Robotics in Medicine" 1995, Nice, France.
K. Rademacher, H. W. Staudte, G. Rau, Computer Assisted Orthopedic Surgery by Means of Individual Templates Aspects and Analysis of Potential Applications, pp. 42-48.
Lutz-P. Nolte, Lucia J. Zamorano, Zhaowei Jiang, Qinghai Wang, Frank Langlotz, Erich Arm, Heiko Visarius, A Novel Approach to Computer Assisted Spine Surgery, pp. 323-328.
Robert Rohling, Patrice Munger, John M. Hollerbach, Terry Peters, Comparison of Relative Accuracy Between a Mechanical and an Optical Position Tracker for Image-Guided Neurosurgery, Journal of Image Guided Surgery, 1:30-34 (1995).
E. Grimson, T. Lozano-Perez, W. Wells, G. Ettinger, S. White, R. Kikinis, Automated Registration for Enhanced Reality Visualization in Surgery, pp. 26-29.
S. Lavalle, P. Sautot, J. Troccaz, P. Cinquin, P. Merloz, Computer-Assisted Spine Surgery: A Technique for Accurate Transpedicular Screw Fixation Using CT Data and a 3-D Optical Localizer, Journal of Image Guided Surgery 1:65-73 (1995).
Russell H. Taylor, Brent D. Mittelstadt, Howard A. Paul, William Hanson, Peter Kazanzides, Joel F. Zuhars, Bill Williamson, Bela L. Musits, Edward Glassman, William L Bargar, An Image-Directed Robotic System for Precise Orthopaedic Surgery, IEEE Transactions on Robotics and Automation, vol. 10, No. 3, Jun., 1994.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus and method facilitating the implantation of artificial does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus and method facilitating the implantation of artificial, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus and method facilitating the implantation of artificial will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-871572

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.