Apparatus and method enabling location of trachea breathing...

Surgery – Respiratory method or device – Respiratory gas supply means enters mouth or tracheotomy...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C428S207000, C428S200000

Reexamination Certificate

active

06382209

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an apparatus and method for performing a percutaneous or non-dissection procedure enabling passage or entry of a trachea breathing tube into a body cavity or viscus.
2. Description of the Prior Art
A number of devices have been advanced for non-dissection establishment of passages into a body cavity or hollow viscus, particularly for tracheostomies. Such devices are normally preferable to dissection procedures, which require considerable surgical skill to prevent profuse bleeding of the involved blood vessels during a the procedure.
U.S. Pat. No. 3,511,243 (Toye) discloses a method and apparatus using a dilator to which a flexible leader is separably attached. A hollow needle is first inserted into the trachea. The distal extremity of the leader is passed through the needle into the trachea and the needle is discarded. An inner guide is telescoped into a relatively inflexible, outer guide or breathing tube which forms a smooth continuation of the outer guide. The guides are forced through body tissue and into the trachea along the path defined by the leader. The inner guide is then withdrawn, removing the leader with it. However, this does not result in withdrawal of the breathing tube because the inflexibility of the plastic material of the breathing tube enables its easy separation from the inner guide. The outer guide or breathing tube is now located in the trachea whereby the patient can breath air through the breathing tube. The method is somewhat complex because it involves a precise sequence of steps which require training to perform properly.
U.S. Pat. No. 4,364,391 (Toye) discloses a related but somewhat less involved procedure. An inner needle is telescoped within a slotted outer needle and the two needles are inserted into the trachea using a syringe attached to the inner needle. The syringe and attached inner needle are withdrawn, leaving the slotted outer needle in place. A leader attached to a dilator is fed through the outer needle and into the trachea. The dilator is telescoped within a trachea breathing tube. The outer needle is next withdrawn from the trachea, and the leader is simultaneously laterally stripped from the outer needle through the outer needle slot. The dilator and breathing tube are then forced into the trachea, using the leader as a guide. Finally, the dilator and its attached leader are withdrawn. The breathing tube is relatively inflexible so that it separates easily from the dilator and is left in position within the trachea. Use of the slotted outer needle enables more simplified prior attachment of the leader to the dilator, compared to the procedure of U.S. Pat. No. 3,511,243, but the procedure of U.S. Pat. No. 4,364,391 nevertheless requires significant training to perform properly.
An outgrowth of the foregoing procedures is the method and apparatus of U.S. Pat. No. 4,471,778 (Toye). Rather than using two needles, a single splittable needle receives the dilator leader. More particularly, the single needle is inserted through the body tissue with a syringe, and the dilator leader is inserted through the splittable needle into the trachea. The dilator is laterally disposed through an opening made in the side of a breathing tube, and extends out the end of the breathing tube. After insertion of the leader, the needle is split and removed. The dilator is thrust into the trachea, carrying the breathing tube with it. Finally the dilator and attached leader are separated from the breathing tube. The breathing tube is made of relatively inflexible material and is easily movable independently of the dilator so that the tube is left in position within the trachea.
Although the use of a splittable needle and lateral entry dilator is a procedure simpler than the procedures of the previously mentioned patents, certain complexities still remained.
U.S. Pat. No. 4,978,334 (Toye et al) is yet another improvement involving a needle mounted to a syringe that is telescoped within the central bore of a dilator. The dilator in turn is telescoped within a trachea tube.
After the needle and dilator tip are inserted into the trachea, the needle is removed from the dilator, leaving the dilator and surrounding trachea tube partially extending into the trachea. The dilator and trachea tube are then thrust farther into the trachea, and the dilator removed through the open proximal end of the trachea tube. Removal of the dilator does not result in removal of the tube because the material of the tube is relatively stiff and easily separable from the dilator so that the tube can be left in position within the trachea.
The present invention is a further improvement upon the foregoing procedures. It utilizes a very flexible thin wall wire reinforced trachea tube in combination with a splittable syringe needle. The thin wall provides an enlarged passage in the breathing tube, which dramatically increases the capacity of the tube to carry air and thereby better meet the breathing needs of a patient.
SUMMARY OF THE INVENTION
In accordance with the present invention, the apparatus and method employ a single syringe mounted splittable needle. The needle provides a percutaneous passage through body tissue and into a body cavity such as a trachea. In this procedure the syringe and needle are inserted into the trachea. The syringe is then removed once aspiration confirms proper location of the needle within the trachea. A special dilator is attached to the needle in place of the syringe. The dilator includes a small diameter leader at its distal extremity which is adapted to be inserted into the trachea through the needle. The opposite or proximal extremity of the dilator includes a handle or knob for pulling the dilator out of the trachea.
The smaller diameter distal extremity of the dilator smoothly increases in diameter to join the dilator midportion. The result is a tapered transition zone or retention seat which defines a stop section or constraining means. Beyond this constraining means the midportion is of generally constant diameter up to the proximal extremity of the dilator.
A flexible, generally cylindrical, ultra thin walled, wire reinforced trachea tube is mounted to the dilator for insertion into the trachea along with the dilator. The major portion of this tube is larger in diameter than the diameter of the dilator. Consequently, the tube can be pushed in a proximal direction over the smaller diameter dilator. However, the distal extremity of the tube is of reduced diameter compared to the dilator at the constraining means. Therefore, the distal extremity of the tube cannot move in a proximal direction beyond the constraining means.
The dilator leader is passed through the needle and into the trachea. The needle is then split apart so that it can be separated from the dilator and removed. The dilator and the tube which is mounted to the dilator are next thrust farther into the trachea. During this step the larger diameter of the dilator constrains the smaller diameter distal end of the very flexible tube from sliding up on the dilator in accordion fashion when the dilator is forced through body tissue into the tracheal area.
The dilator is pulled out of the tube and trachea by means of a dilator handle. During dilator removal the pressure of surrounding body tissue on the tube is sufficient to constrain the tube against proximal movement with the dilator, so that the dilator can be separated from the tube and removed.
The ultra thin walled breathing tube and certain of its advantages are discussed in U.S. Pat. No. 5,537,729, but insofar as applicant is aware there is no teaching or suggestion in the patent or in the art respecting how such a very flexible, longitudinally collapsible tube can be combined with a dilator and needle in a manner enabling rapid placement of the tube within the trachea.


REFERENCES:
patent: 2865374 (1958-12-01), Brown et al.
patent: 2991787 (1961-07-01), Shelden et al.
patent: 3384087 (1968-05-01), Brummelkamp
patent: 3511243 (1970-05-01), Toy
pat

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus and method enabling location of trachea breathing... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus and method enabling location of trachea breathing..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus and method enabling location of trachea breathing... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2874079

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.