Optical waveguides – Temporal optical modulation within an optical waveguide
Patent
1993-06-18
1994-07-05
Gonzalez, Frank
Optical waveguides
Temporal optical modulation within an optical waveguide
385 3, 385 14, G02B 610
Patent
active
053275110
ABSTRACT:
The effects of polarization dependent hole burning and polarization dependent loss are reduced by modulating the state of polarization (SOP) of an optical signal being launched into an optical transmission path periodically between first and second states of polarization of at least one pair of orthogonal states of polarization. Preferably, the SOP is modulated at a rate that is substantially higher than 1/t.sub.s, where t.sub.s is the anistropic saturation time of the optical amplifier. Ideally, the state of polarization of the launched optical signal should be modulated such that it traces a complete great circle on the Poincare sphere. In addition, the effects of polarization dependent loss are further reduced by controllably selecting the particular great circle being traced on the Poincare sphere. In one example, the particular great circle being traced is selected such that a predetermined parameter, for example, the signal to noise ratio, of the optical information signal being received at the remote end of the optical transmission network is maintained at a prescribed value, e.g., a maximum value. In an embodiment of the invention, the great circle is traced at a uniform speed such that the launched optical signal spends equal time intervals in both states of any pair of orthogonal states of polarization on the selected great circle on the Poincare sphere.
REFERENCES:
patent: 4773759 (1988-09-01), Bergh et al.
patent: 4901728 (1990-02-01), Hutchinson
patent: 5009230 (1991-04-01), Hutchinson
patent: 5212743 (1993-05-01), Heismann
patent: 5247382 (1993-09-01), Suzuki
patent: 5253309 (1993-10-01), Nazarathy et al.
IEEE Journal of Quantum Electronics, vol. QE-19, No. 11, pp. 1704-1717, Nov. 1983, "Spectral and Polarization Hole Burning in Neodymium Glass Lasers" by Douglas W. Hall, et al.
Journal of Lightwave Technology, vol. 6, No. 6, (ISSN 0733-8724), pp. 838-845, Jun. 1990, "Analysis of Input-Polarization-Induced Phase Noise in Interferometric Fiber-Optic Sensors and Its Reduction Using Polarization Scrambling" by Alan D. Kersey, et al.
Journal of Lightwave Technology, vol. 6, No. 10, (ISSN 0733-8724), pp. 1599-1609, Oct. 1988, "Optimization and Stabilization of Visibility in Interferometric Fiber-Optic Sensors Using Input-Polarization Control" by A. D. Kersey, et al.
Electronics Letters, vol. 23, No. 12, pp. 634-636, Jun. 4, 1987, "Monomode Fibre Polarisation Scrambler" by A. D. Kersey, et al.
Electronics Letters, vol. 23, No. 10, pp. 513-514, May 7, 1987, "Polarisation-Insensitive Heterodyne Detection Using Polarisation Scrambling" by T. G. Hodgkinson, et al.
Electronics Letters, vol. 24, No. 15, pp. 931-933, Jul. 21, 1988, "Input-Polarisation Scanning Technique for Overcoming Polarisation-Induced Signal Fading in Interferometric Fibre Sensors" by A. D. Kersey, et al.
Optics Letters, vol. 16, No. 6, Mar. 15, 1991, pp. 381-383, "Depolarized source for fiber-optic applications" by W. K. Burns, et al.
Proceedings of the SPIE--The International Society for Optical Engineering, vol. 838, Mar. 15, 1991, pp. 360-364, "Single-Mode Fiber Pseudo-Depolarizer" by A. D. Kersey, et al.
Conference on Optical Fiber Communication/International Conference on Integrated Optics and Optical Fiber Communication, OFC '93/IOOC '93, San Jose, Calif., Feb. 21-26, 1993, Post-Deadline Paper (PD5-1), "Observation of new polarisation dependence effect in long haul optically amplified system" by M. G. Taylor.
Heismann Fred L.
Rosenberg Robert L.
AT&T Bell Laboratories
Gonzalez Frank
Stafford Thomas
LandOfFree
Apparatus and method employing fast polarization modulation to r does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Apparatus and method employing fast polarization modulation to r, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus and method employing fast polarization modulation to r will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-802689