Apparatus, and associated method, for communicating packet...

Multiplex communications – Data flow congestion prevention or control – Control of data admission to the network

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C370S235000

Reexamination Certificate

active

06757245

ABSTRACT:

The present invention relates generally to the communication of packet data, such as TCP-formatted data, in a communication system which includes a radio-link, such as a UMTS (universal mobile telephone service) wireless data network. More particularly, the present invention relates to apparatus, and an associated method, by which more optimally to communicate data packets in the UMTS, or other, communication system.
BACKGROUND OF THE INVENTION
Advancements in communication technologies have permitted the introduction of, and popularization of, new types of communication systems. As a result of such advancements, significant increases in the rates of data transmission, have been permitted. And, new types of communication services have also been made possible.
A radio communication system is exemplary of a type of communication system which has benefited from advancements in communication technologies. At least a portion of a communication path utilized in a radio communication system includes a radio-link. A radio communication system inherently increases communication mobility as communication channels defined in such a system are formed of radio channels and do not require wireline connections for their formation.
Advancements in digital communication techniques are amongst the advancements in communication technologies which have permitted the introduction of the new types of communication systems. Communications effectuated through the use of digital communication techniques are generally of improved bandwidth efficiencies in comparison to communications effectuated utilizing conventional, analog techniques.
A packet data communication system is also exemplary of a communication system made possible as a result of advancements in communication technologies. In a packet communication system, groups of digital bits are formatted into packets to form packets of data. The packets of data are communicated, either individually, or in groups, at discrete intervals. Once received, the packets of data are concatenated together to recreate the informational content of the digital bits of which the packets are formed.
Because packets of data can be communicated at discrete intervals, the communication channel upon which the packets are transmitted need not be dedicated to a single communication pair. Instead, a shared communication channel can be used by a plurality of communication pairs to communicate packets of data on the shared channel.
Standardized protocols by which to format and to communicate packets of data have been developed. A TCP/IP (transmission control protocol/Internet protocol) is exemplary of a packet formatting scheme. And, an X.25 protocol describes another exemplary protocol scheme. Standards relating to conventional packet communication systems have been promulgated for both conventional wireline, as well as wireless, systems.
Packet radio services have been proposed, for instance, for several different cellular communication systems. A cellular communication system is a type of radio communication system, widely implemented and popularly-used. Exemplary of such a packet radio service is the GPRS (General Packet Radio Service) system for GSM (Global System for Mobile Communications).
One proposal is for a so-called 3G (third generation) cellular communication system, referred to as a UMTS (universal mobile telecommunications system) network. Packet data communications are provided for therein. In this proposed system, as well as others, packet data is communicated between a mobile host and a network host. A communication path formed between the mobile and network hosts includes at least one radio-link formed between the mobile host and infrastructure of the UMTS network. Proposals related to the UMTS network include the use of TCP/IP protocols for end-to-end communications, viz., for communications over the wireless and also the fixed parts of the UMTS network. Such a service is typically a “best effort” service, i.e., a service without a guaranteed quality of service. The infrastructure of the UMTS network includes both a wireline IP-based UMTS core network and a radio part, i.e., a radio-link, formed between the mobile host and a base station, forming a portion of the UMTS core network. TCP-based protocols have, however, conventionally been designed for conventional, wireline networks. In conventional TCP protocols, measures intended to control the flow of data and possible congestion within the communication network are designed according to the characteristics of wireline networks where packet losses are often the result of congestion. Congestion arises, for instance, because of the aforementioned sharing of communication resources for different communication pairs. When a packet communication system is implemented in wireless form, however, packet losses are often due to bit errors and/or packet losses introduced during transmission on a radio-link.
Because a UMTS network includes both a wireline, core network and also a radio part, packet losses occurring at the radio part, such as due to communication handovers or corruption on the radio-link are retransmitted locally. When the UMTS is defined in terms of logical layers, local retransmission means, for example, that data packets are retransmitted over the radio link by a radio-link control (RLC) layer. These local retransmissions decrease end-to-end throughput between the mobile and network hosts due to the time required to effectuate the local retransmissions. If a conventional TCP protocol is used in connection with a data transmission network, such as a UMTS network, implemented at least in part over a radio communication link, a sending station originating TCP data continues sending packet data at a constant rate, irrespective of the local retransmissions at the radio part of the network. Thus, the possibility for congestion of the UMTS core network increases, as new packets are transmitted from the network host in the fixed line part of the network while earlier packets are still undergoing retransmission over the radio link to recover from losses in the radio-link. Deleterious results, such as spurious time-outs of the sending station, can occur, significantly reducing the end-to-end performance of the network.
Spurious time-outs occur because of the additional time taken to receive acknowledgments for data packets that are retransmitted over the radio-link under local control of a radio link control layer (RLC). If data packets are retransmitted by the radio link control layer, additional time elapses before the sending TCP protocol in the mobile host receives an acknowledgment that a particular packet has been received by the receiving host e.g. in the fixed line part of the network. By the time an acknowledgment is received, the TCP retransmission timer in the mobile host may have already expired and conventional congestion control measures may have been initiated by the sending TCP, resulting in decreased data throughput. Furthermore, in this situation, initiation of conventional congestion control mechanisms is erroneous because the delayed acknowledgment was due to the additional time required for retransmission over the radio link, rather than real congestion in the network. According to the invention, this erroneous initiation of TCP congestion control measures is prevented by increasing TCP timer time-out values in conditions where there is an increased likelihood of retransmission over the radio link, for example in situations where there is degradation in the quality of the radio-link or a decrease in the bandwidth available for communication over the radio link. On the other hand, if true congestion of the communication network occurs, the method according to the invention still allows conventional congestion control measures to be initiated.
If a manner could be provided by which better to effectuate packet data transmission by a sending station to take into account the performance of the radio part of the system, improved system operation would result.
QoS (Quality of Service) levels

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus, and associated method, for communicating packet... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus, and associated method, for communicating packet..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus, and associated method, for communicating packet... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3299624

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.