Electricity: measuring and testing – Of geophysical surface or subsurface in situ – With radiant energy or nonconductive-type transmitter
Reexamination Certificate
2002-10-01
2004-05-11
Le, N. (Department: 2862)
Electricity: measuring and testing
Of geophysical surface or subsurface in situ
With radiant energy or nonconductive-type transmitter
C324S343000
Reexamination Certificate
active
06734675
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention is related generally to the field of electromagnetic induction resistivity well logging instruments wherein the induction antennas are oriented transversely with respect to the longitudinal axis of the instrument. More specifically, the invention is related to an apparatus for transverse electromagnetic induction resistivity well logging operating in the frequency and/or time domain with reduced errors introduced into the acquired logging data.
2. Description of the Related Art
Electromagnetic induction resistivity well logging instruments are well known in the art. Electromagnetic induction resistivity well logging instruments are used to determine the electrical conductivity, and its converse, resistivity, of earth formations penetrated by a borehole. Formation conductivity has been determined based on results of measuring the magnetic field of eddy currents that the instrument induces in the formation adjoining the borehole. The electrical conductivity is used for, among other reasons, inferring the fluid content of the earth formations. Typically, lower conductivity (higher resistivity) is associated with hydrocarbon-bearing earth formations. The physical principles of electromagnetic induction well logging are well described, for example, in, J. H. Moran and K. S. Kunz,
Basic Theory of Induction Logging and Application to Study of Two
-
Coil Sondes,
Geophysics, vol. 27, No. 6, part 1, pp. 829-858, Society of Exploration Geophysicists, December 1962. Many improvements and modifications to electromagnetic induction resistivity instruments described in the Moran and Kunz reference, supra, have been devised, some of which are described, for example, in U.S. Pat. No. 4,837,517 issued to Barber, in U.S. Pat. No. 5,157,605 issued to Chandler et al and in U.S. Pat. No. 5,600,246 issued to Fanini et al.
The conventional geophysical induction resistivity well logging tool is a probe suitable for lowering into the borehole and it comprises a sensor section containing a transmitter and receiver and other, primarily electrical, equipment for measuring data to infer the physical parameters that characterize the formation. The sensor section, or mandrel, comprises induction transmitters and receivers positioned along the instrument axis, arranged in the order according to particular instrument or tool specifications and oriented parallel with the borehole axis. The electrical equipment generates an electrical voltage to be further applied to a transmitter induction coil, conditions signals coming from receiver induction coils, processes the acquired information, stores or by means of telemetry sending the data to the earth surface through a wire line cable used to lower the tool into the borehole.
In general, when using a conventional induction logging tool with transmitters and receivers (induction coils) oriented only along the borehole axis, the hydrocarbon-bearing zones are difficult to detect when they occur in multi-layered or laminated reservoirs. These reservoirs usually consist of thin alternating layers of shale and sand and, oftentimes, the layers are so thin that due to the insufficient resolution of the conventional logging tool they cannot be detected individually. In this case the average conductivity of the formation is evaluated.
Conventional induction well logging techniques employ coils wound on an insulating mandrel. One or more transmitter coils are energized by an alternating current. The oscillating magnetic field produced by this arrangement results in the induction of currents in the formations which are nearly proportional to the conductivity of the formations. These currents, in turn, contribute to the voltage induced in one or more receiver coils. By selecting only the voltage component which is in phase with the transmitter current, a signal is obtained that is approximately proportional to the formation conductivity. In conventional induction logging apparatus, the basic transmitter coil and receiver coil has axes which are aligned with the longitudinal axis of the well logging device. (For simplicity of explanation, it will be assumed that the bore hole axis is aligned with the axis of the logging device, and that these are both in the vertical direction. Also single coils will subsequently be referred to without regard for focusing coils or the like.) This arrangement tends to induce secondary current loops in the formations that are concentric with the vertically oriented transmitting and receiving coils. The resultant conductivity measurements are indicative of the horizontal conductivity (or resistivity) of the surrounding formations. There are, however, various formations encountered in well logging which have a conductivity that is anisotropic. Anisotropy results from the manner in which formation beds were deposited by nature. For example, “uniaxial anisotropy” is characterized by a difference between the horizontal conductivity, in a plane parallel to the bedding plane, and the vertical conductivity, in a direction perpendicular to the bedding plane. When there is no bedding dip, horizontal resistivity can be considered to be in the plane perpendicular to the bore hole, and the vertical resistivity in the direction parallel to the bore hole. Conventional induction logging devices, which tend to be sensitive only to the horizontal conductivity of the formations, do not provide a measure of vertical conductivity or of anisotropy. Techniques have been developed to determine formation anisotropy. See, e.g. U.S. Pat. No. 4,302,722. Transverse anisotrophy often occurs such that variations in resistivity occur in the azimuthal direction. Techniques for addressing such full anisotropy are discussed in WO 98/00733.
Thus, in a vertical borehole, a conventional induction logging tool with transmitters and receivers (induction coils) oriented only along the borehole axis responds to the average horizontal conductivity that combines the conductivity of both sand and shale. These average readings are usually dominated by the relatively higher conductivity of the shale layers and exhibit reduced sensitivity to the lower conductivity sand layers where hydrocarbon reserves are produced. To address this problem, loggers have turned to using transverse induction logging tools having magnetic transmitters and receivers (induction coils) oriented transversely with respect to the tool longitudinal axis. Such instruments for transverse induction well logging has been described in PCT Patent publication WO 98/00733 by Bear et al. and U.S. Pat. No. 5,452,761 by Beard et al.; U.S. Pat. Nos. 5,999,883 by Gupta et al.; and 5,781,436 by Forgang et al.
In the transverse induction logging tools the response of transversal coil arrays is also determined by an average conductivity, however, the relatively lower conductivity of hydrocarbon-bearing sand layers dominates in this estimation. In general, the volume of shale/sand in the formation can be determined from gamma-ray or nuclear well logging measurements. Then a combination of the conventional induction logging tool with transmitters and receivers oriented along the well axis and the transversal induction logging tool can be used for determining the conductivity of individual shale and sand layers.
One, if not the main, difficulties in interpreting the data acquired by a transversal induction logging tool is associated with vulnerability of its response to borehole conditions. Among these conditions is the presence of a conductive well fluid as well as wellbore fluid invasion effects. A known method for reducing these unwanted impacts on the transversal induction logging tool response was disclosed in L. A. Tabarovsky and M. I. Epov,
Geometric and Frequency Focusing in Exploration of Anisotropic Seams,
Nauka, USSR Academy of Science, Siberian Division, Novosibirsk, pp. 67-129 (1972) and L. A. Tabarovsky and M. I. Epov,
Radial Characteristics Of Induction Focusing Probes With Transverse Detectors In An Anisotropic Medium,
Soviet Geology And Geophysics,
Crosskno Michael S.
Fanini Otto N.
Forgang Stanislav W.
Aurora Reena
Baker Hughes Incorporated
Le N.
Madan Mossman & Sriram P.C.
LandOfFree
Apparatus accurately measuring properties of a formation does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Apparatus accurately measuring properties of a formation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus accurately measuring properties of a formation will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3255681