Antiviral azaindole derivatives

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Heterocyclic carbon compounds containing a hetero ring...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C544S362000, C546S113000

Reexamination Certificate

active

06632819

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention provides compounds having drug and bio-affecting properties, their pharmaceutical compositions and method of use. In particular, the invention is concerned with azaindole piperazine diamide derivatives that possess unique antiviral activity. More particularly, the present invention relates to compounds useful for the treatment of HIV and AIDS.
2. Background Art
HIV-1 (human immunodeficiency virus −1) infection remains a major medical problem, with an estimated 33.6 million people infected worldwide. The number of cases of HIV and AIDS (acquired immunodeficiency syndrome) has risen rapidly. In 1999, 5.6 million new infections were reported, and 2.6 million people died from AIDS. Currently available drugs for the treatment of HIV include six nucleoside reverse transcriptase (RT) inhibitors (zidovudine, didanosine, stavudine, lamivudine, zalcitabine and abacavir), three non-nucleoside reverse transcriptase inhibitors (nevirapine, delavirdine and efavirenz), and five peptidomimetic protease inhibitors (saquinavir, indinavir, ritonavir, nelfinavir and amprenavir). Each of these drugs can only transiently restrain viral replication if used alone. However, when used in combination, these drugs have a profound effect on viremia and disease progression. In fact, significant reductions in death rates among AIDS patients have been recently documented as a consequence of the widespread application of combination therapy. However, despite these impressive results, 30 to 50% of patients ultimately fail combination drug therapies. Insufficient drug potency, non-compliance, restricted tissue penetration and drug-specific limitations within certain cell types (e.g. most nucleoside analogs cannot be phosphorylated in resting cells) may account for the incomplete suppression of sensitive viruses. Furthermore, the high replication rate and rapid turnover of HIV-1 combined with the frequent incorporation of mutations, leads to the appearance of drug-resistant variants and treatment failures when sub-optimal drug concentrations are present (Larder and Kemp; Gulick; Kuritzkes; Morris-Jones et al; Schinazi et al; Vacca and Condra; Flexner; Berkhout and Ren et al; (Ref. 6-14)). Therefore, novel anti-HIV agents exhibiting distinct resistance patterns, and favorable pharmacokinetic as well as safety profiles are needed to provide more treatment options.
Currently marketed HIV-1 drugs are dominated by either nucleoside reverse transcriptase inhibitors or peptidomimetic protease inhibitors. Non-nucleoside reverse transcriptase inhibitors (NNRTIs) have recently gained an increasingly important role in the therapy of HIV infections (Pedersen & Pedersen, Ref. 15). At least 30 different classes of NNRTI have been described in the literature (De Clercq, Ref. 16) and several NNRTIs have been evaluated in clinical trials. Dipyridodiazepinone (nevirapine), benzoxazinone (efavirenz) and bis(heteroaryl) piperazine derivatives (delavirdine) have been approved for clinical use. However, the major drawback to the development and application of NNRTIs is the propensity for rapid emergence of drug resistant strains, both in tissue cell culture and in treated individuals, particularly those subject to monotherapy. As a consequence, there is considerable interest in the identification of NNRTIs less prone to the development of resistance (Pedersen & Pedersen, Ref. 15).
Several indole derivatives including indole-3-sulfones, piperazino indoles, pyrazino indoles, and 5H-indolo[3,2-b][1,5]benzothiazepine derivatives have been reported as HIV-1 reverse transciptase inhibitors (Greenlee et al, Ref. 1; Williams et al, Ref. 2; Romero et al, Ref. 3; Font et al, Ref. 17; Romero et al, Ref. 18; Young et al, Ref. 19; Genin et al, Ref. 20; Silvestri et al, Ref. 21). Indole 2-carboxamides have also been described as inhibitors of cell adhesion and HIV infection (Boschelli et al, U.S. Pat. No. 5,424,329, Ref. 4). Finally, 3-substituted indole natural products (Semicochliodinol A and B, didemethylasterriquinone and isocochliodinol) were disclosed as inhibitors of HIV-1 protease (Fredenhagen et al, Ref. 22).
Structurally related aza-indole amide derivatives have been disclosed previously (Kato et al, Ref. 23; Levacher et al, Ref. 24; Mantovanini et al, Ref. 5(a); Cassidy et al, Ref. 5(b); Scherlock et al, Ref. 5(c)). However, these structures differ from those claimed herein in that they are aza-indole mono-amides rather than unsymmetrical aza-indole piperazine diamide derivatives, and there is no mention of the use of these compounds for treating antiviral infections, particularly HIV. Nothing in these references can be construed to disclose or suggest the novel compounds of this invention and their use to inhibit HIV infection.
REFERENCES CITED
Patent Documents
1. Greenlee, W. J.; Srinivasan, P. C. Indole reverse transcriptase inhibitors. U.S. Pat. No. 5,124,327.
2. Williams, T. M.; Ciccarone, T. M.; Saari, W. S.; Wai, J. S.; Greenlee, W. J.; Balani, S. K.; Goldman, M. E.; Theohrides, A. D. Indoles as inhibitors of HIV reverse transcriptase. European Patent 530907.
3. Romero, D. L.; Thomas, R. C.; Preparation of substituted indoles as anti-AIDS pharmaceuticals. PCT WO 93/01181.
4. Boschelli, D. H.; Connor, D. T.; Unangst, P. C. Indole-2-carboxamides as inhibitors of cell adhesion. U.S. Pat. No. 5,424,329.
5. (a) Mantovanini, M.; Melillo, G.; Daffonchio, L. Tropyl 7-azaindol-3-ylcarboxyamides as antitussive agents. PCT WO 95/04742 (Dompe Spa). (b) Cassidy, F.; Hughes, I.; Rahman, S.; Hunter, D. J. Bisheteroaryl-carbonyl and carboxamide derivatives with 5HT 2C/2B antagonists activity. PCT WO 96/11929. (c) Scherlock, M. H.; Tom, W. C. Substituted 1H-pyrrolopyridine-3-carboxamides. U.S. Pat. No. 5,023,265.
Other Publications
6. Larder, B. A.; Kemp, S. D. Multiple mutations in the HIV-1 reverse transcriptase confer high-level resistance to zidovudine (AZT).
Science
, 1989, 246, 1155-1158.
7. Gulick, R. M. Current antiretroviral therapy: An overview.
Quality of Life Research
, 1997, 6, 471-474.
8. Kuritzkes, D. R. HIV resistance to current therapies.
Antiviral Therapy
, 1997, 2 (Supplement 3), 61-67.
9. Morris-Jones, S.; Moyle, G.; Easterbrook, P. J. Antiretroviral therapies in HIV-1 infection.
Expert Opinion on Investigational Drugs
, 1997, 6(8),1049-1061.
10. Schinazi, R. F.; Larder, B. A.; Mellors, J. W. Mutations in retroviral genes associated with drug resistance.
International Antiviral News
, 1997, 5, 129-142.
11. Vacca, J. P.; Condra, J. H. Clinically effective HIV-1 protease inhibitors.
Drug Discovery Today
, 1997, 2, 261-272.
12. Flexner, D. HIV-protease inhibitors.
Drug Therapy
, 1998, 338, 1281-1292.
13. Berkhout, B. HIV-1 evolution under pressure of protease inhibitors: Climbing the stairs of viral fitness.
J. Biomed. Sci
., 1999, 6, 298-305.
14. Ren, S.; Lien, E. J. Development of HIV protease inhibitors: A survey.
Prog. Drug Res
., 1998, 51, 1-31.
15. Pedersen, O. S.; Pedersen, E. B. Non-nucleoside reverse transcriptase inhibitors: the NNRTI boom.
Antiviral Chem. Chemother
. 1999, 10, 285-314.
16. (a) De Clercq, E. The role of non-nucleoside reverse transcriptase inhibitors (NNRTIs) in the therapy of HIV-1 infection.
Antiviral Research
, 1998, 38, 153-179. (b) De Clercq, E. Perspectives of non-nucleoside reverse transcriptase inhibitors (NNRTIs) in the therapy of HIV infection. IL.
Farmaco
, 1999, 54, 26-45.
17. Font, M.; Monge, A.; Cuartero, A.; Elorriaga, A.; Martinez-Irujo, J. J.; Alberdi, E.; Santiago, E.; Prieto, I.; Lasarte, J. J.; Sarobe, P. and Borras, F. Indoles and pyrazino[4,5-b]indoles as nonnucleoside analog inhibitors of HIV-1 reverse transcriptase.
Eur. J. Med. Chem
., 1995, 30, 963-971.
18. Romero, D. L.; Morge, R. A.; Genin, M. J.; Biles, C.; Busso, M,; Resnick, L.; Althaus, I. W.; Reusser, F.; Thomas, R. C. and Tarpley, W. G. Bis(heteroaryl)piperazine (BHAP) reverse transcriptase inhibitors: structure-activity relationships of novel substituted indole analogues and the identification of 1-&ls

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Antiviral azaindole derivatives does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Antiviral azaindole derivatives, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Antiviral azaindole derivatives will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3166655

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.