Drug – bio-affecting and body treating compositions – Extract – body fluid – or cellular material of undetermined... – Derived from mollusk
Reexamination Certificate
2001-06-23
2003-09-30
Pak, John (Department: 1616)
Drug, bio-affecting and body treating compositions
Extract, body fluid, or cellular material of undetermined...
Derived from mollusk
C424S405000, C424S489000, C424S520000, C424S538000, C424S548000, C424S549000, C424S572000, C424S581000, C424S675000, C424S678000, C424S682000, C424S686000, C424S687000, C424S688000, C424S693000, C424S694000, C424S695000, C424S696000, C424S715000, C424S722000, C514S849000, C514S888000, C514S898000, C514S934000, C514S951000
Reexamination Certificate
active
06627229
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an antiviral agent and a method of producing the same. In particular, the present invention relates to an antiviral agent of an excellent antiviral ability against various viruses without releasing any substance to damage health of animals and plants. The present invention also relates to a method of producing the same.
2. Description of the Related Art
As a sterilizing treatment, fish and shellfish are immersed in an aqueous solution containing sodium hypochlorite before being shipped to fish shops, department stores, supermarkets or the like. The fish is transported after being frozen. Further, the so-called shucked raw shellfish of scallop and oyster to be eaten is transported after it is accommodated in a container and is maintained at a temperature of 5 to 6° C.
The sterilizing treatment and the transport at the low temperature prevent food poisoning by decreasing the number of bacteria. That is, the sterilizing treatment greatly reduces the number of bacteria including pathogenic
Escherichia coli
such as O-157, cell-invasive bacteria, Salmonella or the like. Further, a minute amount of the surviving bacteria does not propagate at the low temperature. Therefore, the number of bacteria can be kept small until the fish and the shellfish are eaten. In other words, since the number of bacteria such as O-157 and Salmonella does not increase at the low temperature, probability of the bacterial food poisoning is greatly low in winter.
However, it is often reported that one presents a symptom of the food poisoning although he or she eats in winter the sterilized seafood which has been transported at the low temperature. Recent studies elucidate that the above food poisoning is not a bacterial one but is a viral one which is caused by the virus including spherical small virus (hereinafter referred to as “SRSV”), astrovirus, rotavirus or the like.
In the viral food poisoning, the above viruses parasitic on the seafood invade a human body if he or she eats the seafood that is not heat-treated. Next, the viruses propagate while destroying mucosal cells of bowels or the like and, as a result, induce enterogastritis symptoms such as diarrhea, emesis, fever or the like. Actually, if the bacteria is not detected in the vomit and excreta of a person who presents the symptom of the food poisoning, the viruses are detected in many cases. Since SRSV is detected frequently in particular, it is supposed that almost all of the viral food poisoning may be caused by SRSV.
For preventing the viral food poisoning, it is assumed to use a substance which reduces the number of viruses and which inhibits the viral propagation for a long period of time. However, a method of cultivating SRSV has not been established yet and it is greatly difficult to investigate what kind of substance is able to be antiviral against SRSV. At present, sodium hypochlorite is used as a usual sterilant on the assumption that it may be effective to SRSV as well. However, as described above, the viral food poisoning is generated in some cases even if the seafood immersed in the aqueous sodium hypochlorite solution is eaten and even the sodium hypochlorite cannot completely prevent the viral food poisoning.
Further, liberated from sodium hypochlorite, chlorine sometimes adheres to the seafood that is sterilized with the aqueous sodium hypochlorite solution. The chlorine is well known as a toxic substance, and the mucous membrane of lungs, nostril or the like is damaged if the chlorine is ingested at a high concentration. Furthermore, there is a possibility that arteriosclerosis occurs due to constant and continuous ingestion of the chlorine whose concentration is even low. That is, it is not favorable for the health to eat the seafood adhered with the liberated chlorine.
Further, if the liberated chlorine is reacted with an organic matter remaining in tap water as a solvent, carcinogenic methane trihalide (trihalomethane) is generated and adheres to the seafood. It is not favorable for the health to eat the seafood adhered with the carcinogenic substance.
As understood from the above, there is a problem that it is not favorable for the human health to sterilize the seafood with the aqueous sodium hypochlorite solution.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide an antiviral agent of an antiviral ability against various viruses and of a possible antiviral ability against SRSV as well without releasing any substance to damage health of animals and plants, and a method of producing the same. The “antiviral ability” in the present invention is a term to indicate abilities to kill the virus and to prevent the virus from propagating.
Even a substance of an antiviral ability against a certain virus is not always able to be antiviral against SRSV. Therefore, it is necessary to determine whether or not the substance has the antiviral ability against SRSV by contacting the substance and SRSV with each other to perform a cultivation test.
However, a nature of SRSV has not been clarified yet. Although a method of detecting SRSV is established, methods of cultivating SRSV and of confirming life or death thereof have not been established. For this reason, it is greatly difficult to develop an agent of the antiviral ability against SRSV, i.e., the ability to greatly decrease the number of viruses of SRSV for a short period of time. That is, it is impossible to confirm efficacy of the medicine because it is impossible to confirm the life or the death of SRSV. Accordingly, National Institute of Health is of the opinion that a substance possibly has the antiviral ability against SRSV virus as well if it has the antiviral ability against herpes simplex virus type 1, adenovirus type 3, influenza virus type A, and coxsackie virus group B type 1 which are representative viruses in classification.
That is, as well known, the virus is roughly classified depending on whether the nucleic acid coated with capsid is deoxyribonucleic acid (DNA) or ribonucleic acid (RNA). The virus is finely classified depending on whether or not it possesses envelope for coating capsid. The nucleic acid of herpes simplex virus type 1 and adenovirus type 3 is DNA, wherein the former has the envelope, and the latter does not have the envelope. By contrast, the nucleic acid of influenza virus type A and coxsackie virus group B type 1 is RNA, wherein the former has the envelope, and the latter does not have the envelope. National Institute of Health is the opinion that a substance of the antiviral ability against all the viruses of these types is highly possibly one of the antiviral ability against almost all the viruses including SRSV.
Taking these opinions into consideration, the present inventors have repeatedly investigated a substance of the antiviral ability against the above respective viruses, and thus the present invention has been consequently completed.
That is, the present invention resides in an antiviral agent comprising an active ingredient of a heat-treated calcium component-containing substance.
The calcium-containing substance expresses the antiviral ability if it is heat-treated.
Since the antiviral agent does not release any substance to damage health of animals and plants, fish and shellfish are neither dead nor sickened even if they are put in water containing the antiviral agent. In addition, since the fish and the shellfish take the water at the same time when they breathe, a dissolved ingredient of the antiviral agent in the water is also taken and kills the viruses in the fish and the shellfish. Thus, the antiviral agent of the present invention kills only the viruses easily and simply without killing and sickening the fish and the shellfish. Similarly, the antiviral agent can kill the viruses adhering to vegetables. The health of humans and animals is not damaged even if they take the animals and the plants whose viruses are sterilized by the antiviral agent.
Furthermore, the antiviral agent can prevent the bacterial food poison
Kikuchi Kazutomo
Kikuchi Noriaki
Guss Paul A.
Houzawa Hiromi
Pak John
LandOfFree
Antiviral agent and method of producing the same does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Antiviral agent and method of producing the same, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Antiviral agent and method of producing the same will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3044287