Drug – bio-affecting and body treating compositions – In vivo diagnosis or in vivo testing – Magnetic imaging agent
Reexamination Certificate
1997-06-16
2002-11-12
Hartley, Michael G. (Department: 1616)
Drug, bio-affecting and body treating compositions
In vivo diagnosis or in vivo testing
Magnetic imaging agent
C424S009300, C424S009360, C424S009400, C424S009450, C424S450000
Reexamination Certificate
active
06479033
ABSTRACT:
FIELD OF INVENTION
The invention relates to a composition for the treatment of tumors, its production and its use and, in particular, for the treatment of non-resectable primary and metastasized liver tumors.
BACKGROUND
In anti-tumor therapy of non-resectable liver tumors, the regional administration of cytostatic drugs, in conjunction with flow-retarding substances to increase the local concentration of the cytostatic drugs at the tumor, has proven to be meaningful. In particular, as has been described by Link as well as by Collins, an endeavor should be made to increase the concentration of the cytostatic drug at the tumor site in accordance with the dose-effect relationship and, at the same time, to preserve the surrounding liver parenchyma. It is the objective here to achieve the above-described effects at the tumor and, at the same time, to minimize systemic side effects. This principle has already, been realized many years ago in chemo-embolization.
Various problems arise when this form of therapy is employed. Until now, the complete embolization could be portrayed only indirectly by means of various methods. For this purpose, an iodine-containing contrasting agent was injected for the application of the chemoembolism until there is a retrograde flow of contrasting agent; a further method makes use of the addition of lipoidol, which shows the hepatofugal or hepatopedal flow as small iodine-containing containing fat bubbles.
The indirect method has the disadvantage that a retrograde runoff of the mixture of cytostatic drug and embolisate is not always noticed, as a result of which dangerous complications may arise (gastrointestinal necroses). There are therefore limitations to the applicability in facilities with simple X-ray equipment.
Several antitumor therapy preparations are known. In U.S. Pat. No. 5,620,703 and German patent No. 4,341,478, a preparation is described, which can be used particularly for the therapy of non-resectable, primary and secondary liver tumors. This preparation contains lyophilized starch particles, which are combined with one or more cytostatic drugs and are dissolved in iodine-, gadolinium- or magnetite-containing contrasting agents. Carboplatin is a suitably cytostatic drug for this preparation.
A high concentration of the cytostatic drug used is attained with the preparation aforementioned in the tumor to be treated. It is, however a disadvantage that the residence time in the tumor is only about 4-6 hours. This is generally not adequate for a successful therapy.
SUMMARY OF THE INVENTION
It is an object of the invention to avoid the disadvantages that arise during the chemoembolization of tumors and to develop an optimum embolisate, which not only shows the effect brought about the respective vascular structure of the tumor, but can also be portrayed directly and reliably in tumor monitoring.
It is an other object of the invention to build up a drug targeting system for fighting cancer by means of suitable carrier systems to accumulate cytostatic drugs in the tumor and to increase the residence time in the tumor clearly. At the same time, toxic side effects on the remaining organs shall be decreased.
The composition of the present invention contains lyophilized starch particles in combination with cytostatic drugs, dissolved in iodine-, gadolinium- or magnetite-containing contrasting agents.
The lyophilized starch particles are an important component of the composition of the present invention. Particles, 40-90 &mgr;m in size, more suitably of from 60 &mgr;m to 90 &mgr;m; they are suitably dissolved in physiological salt solution up to a concentration of from 5 mg/ml to 70 mg/ml and then lyophilized in a manner known per se. A gelatine, particularly an absorbable gelatine powder is suitable.
All known cytostatic drugs can be used. For example, carboplatin, which is mixed, also in lyophilized form, with the lyophilized starch. Suitable cytostatic drugs also include 5-fluorouracyl, and 5-fluorouridine.
Liquid, iodine-containing compounds, suitably iodo-or polyiodophenyl derivatives, are used as iodine-containing contrast agents. Suitable materials include Iopromide, Ioxitalamate, Ioxaglate, Iopamidol, Iohexol, Iotralon, Metrizamide or Ultravist. At the same time, the contrasting agent serves as solvent for the mixture of the lyophilisates.
Either gadolinium- or magnetite-containing contrasting agents are used for the magnetic resonance tomography (MRT). Suitably from 30 mg to 90 mg lyophilized or degradable starch particles are mixed in the required. amounts of cytostatic drug and subsequently dissolved in from 3 ml to 6 ml of contrasting agent. It is also possible to dissolve the given amount of lyophilized starch particles first in the contrast agent and, after that, add the therapeutically necessary amount, such as from 5 mg to too mg of the cytostatic drug.
A conventional, commercial embolisate sold by Kabi Pharmazia under the trade name Spherex is suitably the starting material for the preparation of lyophilized starch particles. This product is dialyzed in the dialysis tube against doubly distilled sterile water for 36 hours with a threefold exchange of water. After that, the material is removed from the dialysis tube with a sterile pipette and frozen in a sterile plastic vessel at −70° C. The cold vessel is brought into the freezedryer and dried for 24 hours under a high vacuum.
The following describes the use of the preparation and its effects. The requirements, which have to be met by an embolisate for tumor therapy, depend on the vascular structure of the tumor, that is, the particles should be of a suitable size to reach the tumor together with the cytostatic drug over an embolization of, as far as possible, peripheral portions of the vascular bed of the tumor. The optimum particle size for this lies between 40 and 90 &mgr;m. A deviation in size from that given above in the direction of larger particles brings about a stasis in the supplying tumor vessels, so that the cytostatic drug cannot reach the tumor in an optimally high concentration. This is due to a peripheral blood inflow over the opening of an arteriovenous shunt and the therewith associated dilution effect for the cytostatic drug. An even smaller particle size can lead to multiple systemic embolizations, such as lung embolisms.
The starch particles, lyophilized pursuant to the invention, exhibit embolization behavior lasting for 20 to 60 minutes. An interval therapy with this briefly effective embolisate has proven to be advantageous in comparison to embolisates, which are effective for a longer time. During the desarterilization (Bengmark. etc.), there is an angioproliferative effect, which sets in rapidly, so that there is neovascularization of the tumor within 48 hours and a renewed attempt at therapy is thus made difficult. Similar effects are also seen when a long-acting embolisates are used with thrombosis of the supplying tumor vessels and connection of the tumor vessels, for example, to the diaphragm, the greater omentum, etc., which limit further therapy.
The new preparation and its use enable without the help of indirect methods, using X-ray fluoroscopy, a sufficient embolization being portrayed directly, the tumor with its blood vessels being imaged as a still picture; using gadolinium- or magnetite-containing contrast drugs in combination with flow-coded measurement sequences, and the embolization can also be portrayed with the help of magnetic resonance. tomography; the attainable concentration of cytostatic drugs in the tumor tissue is considerably increased (by up to a factor of 20) in comparison to other forms of administration; and the application is simplified while, at the same time, the safety is increased (retrograde faulty perfusion is avoided).
Accordingly, with this form of therapy, a broad application can be made accessible, also outside of special therapy centers.
REFERENCES:
patent: 5542935 (1996-08-01), Unger et al.
patent: 5620703 (1997-04-01), Reszka et al.
patent: 6207133 (2001-03-01), Reszka et al.
patent: 4341478 (1995-06-01), N
Berger Gerd
Lippmann Matthias
Pohlen Uwe
Reszka Regina
Stiller Detlef
Goodwin & Procter LLP
Hartley Michael G.
Max Delbrück Zentrum für Molekulare Medizin
LandOfFree
Antitumor cystostatic and contrast agent does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Antitumor cystostatic and contrast agent, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Antitumor cystostatic and contrast agent will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2968898